Superconductor Analog-to-Digital Converter for High-Resolution Magnetic Resonance Imaging

Masoud Radparvar, Andrei Talalaevskii, Robert J. Webber, Alan M. Kadin, Hypres, Inc., Elmsford, NY

Elie K. Track, nVizix, LLC, Stamford, CT

Robin A. de Graaf, Terence W. Nixon, and Douglas L. Rothman, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT

Supported in part by NIH under grant #R43EB015788-01 and ONR contract #N00014-12-M-0103.
Summary

• Superconducting ADC increases SNR of high-field MRI

• ADC not yet optimized – RSFQ ADC originally designed for broadband digital radio receiver

• Mounted on 4K cryocooler - Operated in instrument room

• Most applicable for small-coil MRI systems, such as those for small animals, and for arrays of small coils

• Future plans: Couple an optimized ADC to a cryogenically cooled coil and preamplifier to further enhance SNR

• Projected significant improvement in image resolution
Large Dynamic Range of MRI Signal

- Dynamic range (DR) of MRI RF signal is much larger than DR of resulting image
- \(B_{rf\text{-max}} \) = coherent signal from entire slice
- \(B_{rf\text{-min}} \) = weak signal in single voxel
- Min. image resolution \(\sim 100 \times 100 \Rightarrow \) DR of \(\sim 10,000 \sim 13 \) bits in addition to bits for image contrast.
- Standard ADC in MRI systems has 16 bits of DR
- DR may be limited by:
 - Body noise
 - Receiver noise
 - Quantization noise
ADC Limits not Widely Recognized

- Classic human-scale MRI uses single large receive coil:
 - Couples body noise from entire body
 - Resolution limited by body noise
 - 16-bit ADC may be sufficient

- Recent trends to larger static B \(\rightarrow\) increased SNR
 - Up to 3T for humans, up to 9.4T for small animals.
 - May require ADC with more bits

- Small coils couple less body noise with increased SNR and finer resolution.
 - Small-bore MRI systems for small animals
 - Multi-coil arrays, with receiver for each coil
 - Cooled small coils can increase SNR even further
 - May require ADC with more bits
Example of MRI Dynamic Range*

*Figure from Behin, et al., “Dynamic Range Requirements for MRI” Concepts in Magnetic Resonance (2005).
Superconducting ADCs

- **Essentially Digital SQUIDs**
 - Each flux quantum $\Phi_0=h/2e$ generates SFQ pulse
 - SFQ pulses counted in RSFQ digital counter
 - Low-noise and very linear
 - Nb integrated circuits operating near 4 K
 - Unlike analog SQUIDs, Not limited to low kHz frequencies
 Can work up to GHz

- **Oversampling** superconducting ADCs
 - Very high sampling rate ~ 20 GHz, much higher than Nyquist rate for signal bandwidth
 - Oversampling by factor R increases DR by ~ $R^{1.5}$
 - If $R \sim 10^5$, DR ~ 25 bits, so 100 kHz signal can be measured to 25 bits precision
 - Extremely high speed of RSFQ circuits enables simple supercond. ADCs to outperform complex semicond. ADCs

- Phase-modulation ADC works well for low frequencies, existing PM-ADC designed for digital-RF receiver was used in present experiment.
Superconducting ADC Performance

- DR (effective bits) vs. output sample rate for signals at the Nyquist freq. for high-performance semiconduct. and superconduct. ADCs
Conventional Receiver Technology

- Pick-up coil couples a weak RF magnetic field at a frequency of order 100 MHz (1 T ~ 42.6 MHz) to a low-noise preamplifier
- The signal is mixed down to an intermediate frequency and digitized by an ADC
MRI Superconducting Receiver

ADC substituted for the 16-bit ADC of a Bruker Avance 4T small-animal MRI system at Yale Magnetic Resonance Research Center.
Cryocooled ADC

- Single-rack high-performance All Digital Receiver (ADR) system developed for military and cellular application
- Used here as a receiver of a pre-clinical MRI system
- System based on a superconducting ADC with high sensitivity and high linear dynamic range
- Circuit operated in the instrument room adjacent to the 4T MRI system, with a standard mu-metal shield to screen out stray magnetic fields
- ADC chip mounted on the 4K stage of a Sumitomo two-stage cryocooler
Image Acquisition

MRI signal and resulting image of phantom. Superconducting ADC enabled higher SNR and resolution limited by the noise of pick-up coil.
Alternative Direct Digitization

- Digitize 170 MHz RF signal
- Bypass analog mixer
- Tested in the same system
- Generated image
- DR in this configuration is reduced due to much lower oversampling ratio
- Bandpass ADC optimized for direct digitization would perform much better
Future: Add Cryogenic Receiver

- Cold coil and preamplifier primarily used in small-animal MRI systems and NMR chemical analysis
- Bruker commercial systems use large cryocooler with circulating cold He gas to cool both coil and LNA in/near the magnet
Advantages of Cooling Small MRI Coils

- Darrasse (2003) compared coil noise \(\propto (R_c T_c)^{1/2} \) to sample noise (i.e., body noise \(\propto (R_s T_s)^{1/2} \)) over a range of frequencies and coil sizes (see Plot).

- The lines represent the boundary between the body-noise-dominated regime (upper right) and that dominated by coil noise (lower left), for warm and cooled copper, and for superconducting coils.

- For small-coil high-field MRI, cooling the coil becomes essential to increase SNR.

- This also permits increased resolution requiring an ADC with high DR.
Coil Noise vs. Body Noise*

*from Darrasse and Ginefri, “Perspectives with Cryogenic RF Probes in Biomedical MRI”, Biochemie (2003).
A future MRI system is proposed that combines a coil/LNA cooled to ~ 60 K (using a compact single-stage cooler) with an optimized high-DR superconducting ADC, cooled to 4 K.

Such a modular system with separate, non-interfering coolers may be simpler and more reliable than a fully integrated system.
Preliminary Design of Cryocooled Coil

- 4 Pickup coils, integrated with their LNAs, are cooled using a compact Sunpower cryocooler (11W @70K) in 10cm bore of an MRI system
Probe Design

Transmit coils and shield are not represented.
Future Design: Portable Low-Field Brain MRI

- Array of cryogenic coils (~70K) in static field of 100 mT, coupled to 4K digital-SQUIDs (ADCs) operating at 4 MHz
- Provides sufficient SNR for brain image in reasonable time
Conclusions

• In small-coil, high-field regime, standard ADC is insufficient for full dynamic range of MRI signal, limiting resolution

• Superconducting ADC has larger DR than standard ADC, improving resolution in 7T small-animal MRI

• Even larger DR possible using cryocooled coils
 ➢ Combining these with supercond. ADC enables better resolution for magnetic resonance microscopy

• A similar approach using array of small cooled coils and digital superconducting electronics enable a portable MRI system in a field ~ 0.1 T with good resolution and scanning time
References