



7-11 July 2014 ICEC25 /ICMC 2014 Conference University of Twente, The Netherlands



# Beyond the Large Hadron Collider: a first look at cryogenics for CERN future circular colliders

Philippe Lebrun & Laurent Tavian, CERN





## Contents

- Introduction: the European Strategy Update
  - Future circular hadron collider: FCC-hh
  - Future circular electron-positron collider: FCC-ee
- Cryogenic plant challenges
- Conclusion





# European Strategy Update on Particle Physics Design studies and R&D at the energy frontier

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide"

HFM







#### CLIC CDR and cost study (2012)



- 3 volumes: physics & detectors, accelerator complex, strategy, cost & schedule
- Collaborative effort: 40+ institutes worldwide





#### Presentation given at ICEC25 – ICMC2014, Enschede, July 2014





IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014



#### The Future Circular Colliders (FCC) design study Aiming for CDR and Cost Review for the next ESU (2018)



Geneva

galev.

- 80-100 km tunnel infrastructure in Geneva area
- design driven by pp-collider requirements
- with possibility of e+-e- (TLEP) and p-e (VLHeC)
- CERN-hosted study performed in international collaboration

# $\begin{array}{l} 16 \text{ T} \Rightarrow 100 \text{ TeV} \text{ in } 100 \text{ km} \\ 20 \text{ T} \Rightarrow 100 \text{ TeV} \text{ in } 80 \text{ km} \end{array}$

#### LEGEND

HE\_LHC 80km option potential shaft location

#### Structure of FCC study

Leader Michael Benedikt, Deputy Frank Zimmermann



Future Circular Colliders - Conceptual Design Study for next European Strategy Update (2018)

#### Infrastructure

tunnels, surface buildings, transport (access roads), civil engineering, cooling ventilation, electricity, cryogenics, communication & IT, fabrication and installation processes, maintenance, environmental impact and monitoring, safety





#### Phases of the FCC study







#### Beam parameters impacting FCC-hh cryogenics

| Parameter                                  | LHC    | FCC-hh      | Impact                                                   |
|--------------------------------------------|--------|-------------|----------------------------------------------------------|
| c.m. Energy [TeV]                          | 14     | 100         | Synchrotron radiation (~ E <sup>4</sup> )                |
| Circumference C [km]                       | 26.7   | 100 (83)    |                                                          |
| Dipole field [T]                           | 8.33   | 16 (20)     | Resistive heating, stored energy, quench pressure relief |
| Straight sections                          | 8      | 12          | i.e. 12 arcs                                             |
| Average straight section length [m]        | 528    | 1400        | $\rightarrow$ arc length: ~7 km (~5.5 km)                |
| Number of IPs                              |        | 2 + 2       | Cryogenics for detectors (LHe, LAr)                      |
| Peak luminosity [10 <sup>34</sup> cm-2s-1] | 1      | 5           | Secondaries from IPs                                     |
| Beam current [A]                           | 0.584  | 0.5         |                                                          |
| RMS bunch length [cm]                      | 7.55   | 8 (7.55)    |                                                          |
| Stored beam energy [GJ]                    | 0.392  | 8.4 (7.0)   | Safety: release of He in tunnel                          |
| SR power per ring [MW]                     | 0.0036 | 2.4 (2.9)   | Large load and dynamic range                             |
| Arc SR heat load [W/m/aperture]            | 0.17   | 28.4 (44.3) |                                                          |
| Dipole coil aperture [mm]                  | 56     | 40          | Beam screen design                                       |
| Beam aperture [mm]                         | ~40    | 26          |                                                          |





## The synchrotron radiation

- 28.4 W/m per beam for FCC-hh 100 km, i.e. a total load of 4.8 MW
- 44.3 W/m per beam for FCC-hh 83 km, i.e. a total load of 5.8 MW
- If this load is falling directly on the magnet cold masses working at 1.9 K or 4.5 K (not yet defined), the corresponding total electrical power to refrigerators is
  - > 4.3 or 1.1 GW for FCC-hh 100 km
  - > 5.2 or 1.3 GW for FCC-hh 83 km
- Beam screens are mandatory to stop the synchrotron radiation at a higher temperature reducing the electrical power to refrigerator.
  - $\rightarrow$  Is there a optimum operating temperature?





Beam screen – cold mass thermodynamics



- Exergy load  $\Delta E$  = measure of (ideal) refrigeration duty :  $\Delta E = \Delta E_{cm} + \Delta E_{bs}$   $\Delta E = Q_{cm} \cdot (T_a/T_{cm} - 1) + Q_{bs} \cdot (T_a/T_{bs} - 1)$ 

- Real electrical power to refrigerator:  $P_{ref} = \Delta E/\eta(T)$ with  $\eta(T) = efficiency w.r. to Carnot = COP_{Carnot}/COP_{Real}$  $P_{ref} = Q_{cm} \cdot (T_a/T_{cm} - 1)/\eta(T_{cm}) + Q_{bs} \cdot (T_a/T_{bs} - 1)/\eta(T_{bs})$ 





### BS – CM thermodynamics Numerical application

Total electrical power to refrigerator  $P_{ref.}$  considering:

- a beam screen similar to that of the LHC
- refrigerator efficiencies identical to those of the LHC.

 $T_{cm}$ = 1.9 K, optimum for  $T_{bs}$ = 70-80 K  $T_{cm}$ = 4.5 K, flat optimum for  $T_{bs}$ = 120 K

Temperature range 40-60 K retained



## Forbidden by vacuum and/or by surface impedance









#### Beam screen cooling







# Cooling potential of cryogens for beam screen



\* at exit conditions

He 20 bar

Ne 30 bar

Operating the beam screen at higher temperature would allow other cooling fluids  $\rightarrow$  w/o flow, the BS temperature will decrease down to 1.9-4.5 K  $\rightarrow$  Solidification!

107

79.1



40-60 K

40-60 K

1.64

11.3



#### Cryo-magnet cross sections







#### A first estimate of heat loads

|                             |                            | LHC [W/m] |          |       | FCC-hh [W/m] |              |
|-----------------------------|----------------------------|-----------|----------|-------|--------------|--------------|
|                             | Temperature level          | 50-75 K   | 4.5-20 K | 1.9 K | 40-60 K      | 1.9 or 4.5 K |
|                             | CM supporting system       | 1.5       |          | 0.10  | 2.9          | 0.2          |
| Static Radiative insulation |                            |           |          | 0.11  |              | 0.15         |
| heat                        | Thermal shield             | 2.7       |          |       | 3.8          |              |
| inleaks                     | Feedthrough & vac. barrier | 0.2       |          | 0.1   | 0.2          | 0.1          |
|                             | Total static               | 4.4       |          | 0.3   | 6.9          | 0.45         |
|                             | Synchrotron radiation      |           | 0.33     | 3     | 57 (88)      | 0.2          |
| Dynamic                     | Image current              |           | 0.36     |       | 2.7 (2.9)    |              |
| loads                       | loads Resistive heating    |           |          | 0.1   |              | 0.3 (0.4)    |
|                             | Total dynamic              |           | 0.7      | 0.1   | 60 (91)      | 0.5 (0.6)    |
| Total                       |                            | 4.4       | 0.7      | 0.4   | 67 (98)      | 1.0 (1.1)    |

(): Value in brackets for 83-km FCC-hh



#### FCC-hh cooling requirements



w/o cryo-distribution !

Per arc

w/o operation overhead !



A large part of the refrigeration capacity corresponds to non-isothermal refrigeration above 40 K  $\rightarrow$  open the door to non-conventional refrigeration (He-Ne mixture...)





|                                 | Layout 1             | Layout 2             | Layout 3     |  |
|---------------------------------|----------------------|----------------------|--------------|--|
| Transport of refrigeration      | Over 8.3 km (6.9 km) | Over 4.2 km (3.5 km) |              |  |
| Nb of cryoplants (availability) | 12                   | 12                   | 24           |  |
| Size of cryoplants              | <b>Beyond SOTA*</b>  | Beyond SOTA*         | Within SOTA* |  |
| Nb of technical sites           | 6                    | 12                   | 12           |  |
| Partial redundancy              | Y                    | Ν                    | Y            |  |

\*: SOTA, State-Of-The-Art





#### Cool-down from 300 to 80 K

|                         |               |                   | FCC-hh |        |                           |
|-------------------------|---------------|-------------------|--------|--------|---------------------------|
|                         |               | LHC               | 83 km  | 100 km |                           |
| Specific CM mass        | [t/m]         | 1.7               | 3.3    |        |                           |
| Arc length              | [m]           | 2800              | 5500   | 7000   |                           |
| Arc mass                | [t/arc]       | 4648              | 18260  | 23240  |                           |
| Nb arc                  | [t]           | 8                 | 12     | 12     |                           |
| Total mass              | [kton]        | 37                | 219    | 279    |                           |
| LN2 preccooler capacity | [kW/arc]      | 600               | 2357   | 3000   | (for a CD time of 2 weeks |
| LN2 consumption         | [t/arc]       | 1250              | 4911   | 6250   |                           |
|                         | [t/machine]   | 10000             | 59000  | 75000  |                           |
|                         | [trailer/arc] | 60                | 245    | 310    | (~20 t per trailer)       |
|                         |               | [trailer/machine] | 480    | 2950   | 3750                      |

#### Operation cost and logistics !





10 t GHe storage

### LHe inventory

- ~ 50 l/m in FCC-hh magnet cold masses,
- ~100 l/m for FCC-ee RF cryo-modules



#### 15 t LHe storage

~ 12 % of EU annual market~ 2.5 % of annual world market



#### Impact on environment

Impact on operation cost

LHC losses of He inventory:

- $\rightarrow$  The first year: 30 %
- $\rightarrow$  The third year: 15 %
- → Objective: ~10 % per year

Assuming the same losses for FCC-hh:

 $\rightarrow$  240 ton to 80 ton per year !



## Contents



- Introduction: the European Strategy Update
  - Future circular hadron collider: FCC-hh
- Future circular electron-positron collider: FCC-ee
- Cryogenic plant challenges
- Conclusion





### Cryogenics for FCC-ee @ 175 GeV (From E. Jensen)

|                                          | 704 MHz 5-cell cavity |                                           |
|------------------------------------------|-----------------------|-------------------------------------------|
| Gradient                                 | 20 MV/m               |                                           |
| Active length                            | 1.06 m                |                                           |
| Voltage/cavity                           | 21.2 MV               |                                           |
| Number of cavities                       | 568                   |                                           |
| Number of cryomodules                    | 71                    | (per beam), i.e. 1800 m in total          |
| Total length cryomodules                 | 902 m                 |                                           |
| R/Q                                      | 506 Ω                 |                                           |
| $Q_0$                                    | $2.0\cdot 10^{10}$    |                                           |
| Dynamic heat load per cavity<br>@ 1.9 K: | 44.4 W                | (per beam), i.e. 50.4 kW @ 1.9 K in total |
| Total dynamic heat load                  | 25.2 kW               | Total electrical power to                 |
| CW RF power per cavity                   | 176 kW                | the refrigerators: ~ 45 MW                |
| Matched Q <sub>ext</sub>                 | $5.0 \cdot 10^6$      | Page 22                                   |



#### **Cryogenics for FCC-ee**

- 12 cryoplants:
  - > ~150 m of RF cavities per cryoplant
  - > 4.2 kW @ 1.9 K of RF power per cryoplants (equivalent to 16 kW @ 4.5 K) w/o:
    - static losses of cryomodule,
    - static and dynamic losses in the couplers
    - cryogenic distribution losses
    - operation overhead





## Contents



- Introduction: the European Strategy Update
  - Future circular hadron collider: FCC-hh
- Future circular electron-positron collider: FCC-ee
- Cryogenic plant challenges
- Conclusion





# State-of-the-art of cold compressors (single train)







#### Main FCC cryogenics challenges: towards 1 MW @ 4.5 K



Study and development of larger cryoplants (50-100 kW @ 4.5 K range):

- $\rightarrow$  New type of cycle compressors ? (centrifugal vs screw)
- → New refrigeration cycle ? (higher HP pressure, He-Ne mixture)
- → Improvement of reliability / availability / efficiency



# Main FCC cryogenics challenges: superfluid refrigeration



Study and development of larger cold-compressor systems (10 kW @ 1.8 K range):

- → Larger cold compressor development ?
- $\rightarrow$  Operation with parallel cold compressor trains ?
- → Improvement of reliability / availability / efficiency



## Conclusion

- FCC will trigger specific cryogenic studies and developments which will stimulate progress of the state-of-the-art in term of technologies and system reliability and efficiency.
- We hope that the FCC study will also stimulate the worldwide cryogenic community.
  - $\rightarrow$  The sharing of expertise on previous or present projects and studies will be essential.

 $\rightarrow$  Collaborations are welcome !

