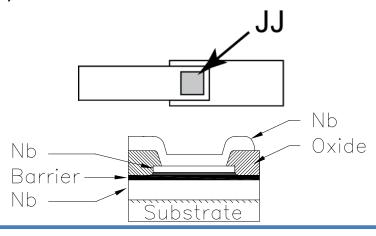
SQUID Fundamentals and Applications

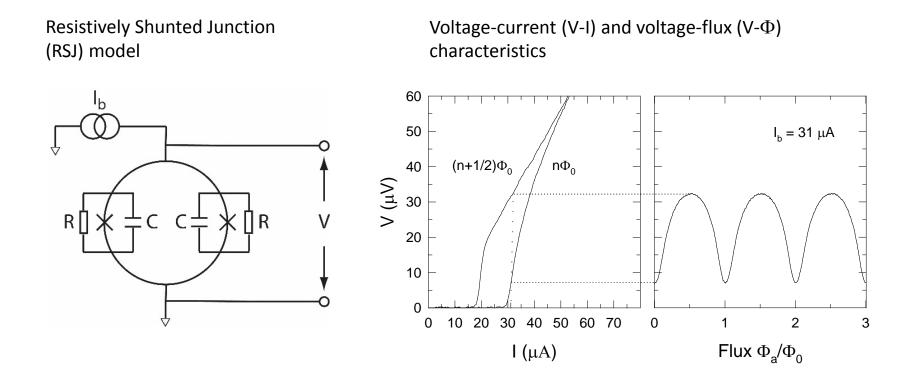
Robin Cantor STAR Cryoelectronics


- What are Josephson Junctions and DC SQUIDs?
- SQUID Readout Electronics
- SQUID Applications
 - Biomagnetism
 - Geophysics
 - Non-Destructive Testing
 - Basic Research


What Is A Josephson Junction?

Two superconductors coupled by a weak link

- Thin insulating barrier (superconductor-insulator-superconductor or SIS junction)
- Thin layer of non-superconducting metal (superconductor-normal metalsuperconductor or SNS junctions)
- A physical constriction at which superconductivity is weakened
- Predicted in 1962 by Brian Josephson, confirmed experimentally by Anderson and Rowell in 1963


Low temperature superconductor (LTS) window-type junction, patterned using Selective Nb Etch Process (SNEP)

What Is A DC SQUID?

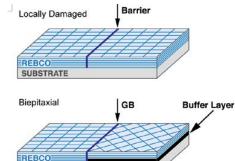
- Two Josephson junctions connected in parallel with superconducting wire
- Usually operated using DC current bias

Basic DC SQUID Design

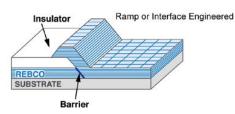
Optimal Design Parameters

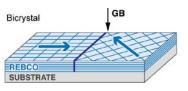
Stewart-McCumber parameter:
$$\beta_c = \frac{2\pi}{\Phi_0} I_0 R^2 C < 1$$
Modulation parameter: $\beta_L = \frac{2LI_0}{\Phi_0} \approx 1$ Energy resolution: $\epsilon = \frac{S_{\Phi}}{2L} \approx 16k_B T \sqrt{LC} \propto \frac{C_s}{J_c}$

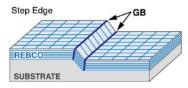
For lowest noise performance (LTS window-type junctions),

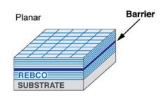

- Low SQUID inductance $L \sim 10$ to 100 pH
- Low capacitance junctions
 C << 1 pF
- High critical current density $J_c \sim 1,000$ to 100 A/cm^2

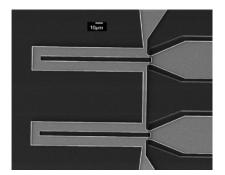
For $A_J \sim 10 \ \mu m^2$, $J_c = 1 \ \mu A / \mu m^2 = 100 \ A / cm^2$


For $A_J \sim 1 \ \mu m^2$, $J_c = 10 \ \mu A / \mu m^2 = 1,000 \ A / cm^2$




Junction Fabrication, HTS




SUBSTRATE

- Step-edge dual SQUID
- ~30 fT/Hz^½ for 8x8 mm²
 magnetometer

M. I. Faley et al., IEEE Trans. Appl. Supercond. **26**, 2016, 1600404.

Locally Damaged Weak Links (e.g., UCSD, ESPCI)

- Focused beam or irradiation
- Low R_n , $I_c R_n$ at 77 K; weak V- Φ
- Single-layer; attractive for dense circuits

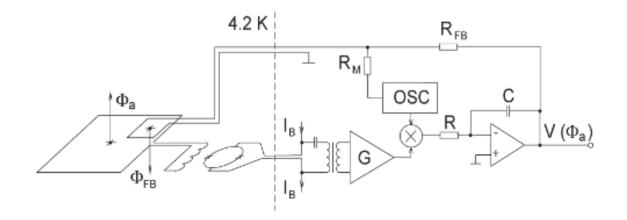
Bicrystal

- STO with 24, 30 or 36 degree angles
- Yields ~100%, reasonable uniformity
- Single-layer; constrained by GB

Step Edge (e.g., CSIRO, Juelich)

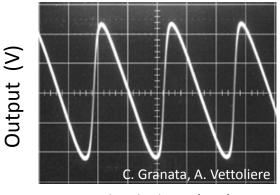
- High $I_c R_n$ (200-300 μ V), $\Phi_n \sim 4 \mu \Phi_0$ (75 K)
- Good uniformity; single-layer

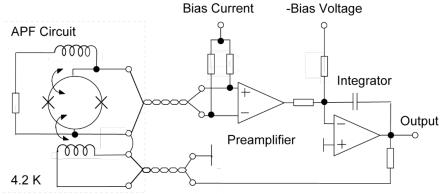
Ramp Edge (e.g., STI, SUSTERA)


- Deposited or interface engineered barrier; enables multilayer designs
- 10 fT/Hz^{1/2} for 15x15 mm² magnetometer with 20-turn input coil; high 1/f noise below 1 kHz S. Adachi et al., IEICE Trans. Electron. **E95-C**, 2012 337.

AC Flux Modulation

$$S_{\Phi,\text{tot}} = S_{\Phi} + S_{V,\text{amp}} / \left| \frac{\partial V}{\partial \Phi_a} \right|^2$$

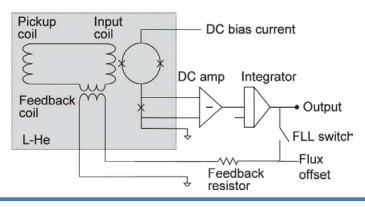

- Square-wave modulation, $f_{\rm mod}$ ~0.1 to 2 MHz
- Transformer used to step up SQUID output signal, impedance match to FET
- Robust against thermal drifts and 1/f noise not due to critical current fluctuations
- Four-wire connection to SQUID using warm transformer only
- Bandwidth limited to $\sim f_{mod}/2$

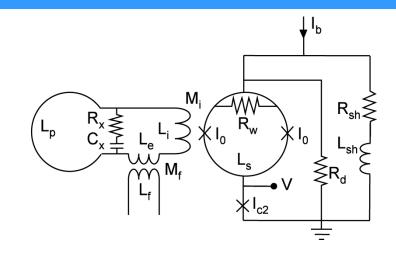


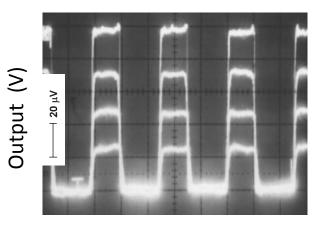
Direct-Coupled

- SQUID output directly-coupled to room-temperature preamplifier
- Additional Positive Feedback (APF) steepens $\partial V / \partial \Phi$ to reduce preamplifier noise contribution
- Four-wire connection to SQUID
- Wideband operation, up to 20 MHz

Applied Flux (Φ_a)

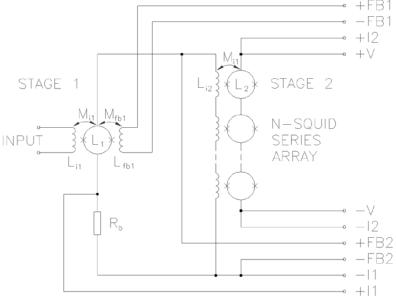



D. Drung and M. Mück, SQUID Electronics, in The SQUID Handbook, Fundamentals and Technology of SQUIDs and SQUID Systems, Volume I (eds J. Clarke and A. I. Braginski), 2004.



Relaxation Oscillation SQUIDs

- Hysteretic "signal" SQUID with $I_{c1,min} < I_{c1}(\Phi_a) < I_{c1,max}$
- Hysteretic "reference" SQUID or JJ with I_{c1,min} < I_{c2} < I_{c1,max}
- R_{sh}L_{sh} sets relaxation oscillation frequency, read out time-averaged DC voltage across reference JJ:
 - zero if $I_{c1}(\Phi_a) < I_{c2}$, non-zero if $I_{c1}(\Phi_a) > I_{c2}$ - for $I_{c1}(\Phi_a) = I_{c2}$, very large $\partial V / \partial \Phi$
- Five-wire connection to SQUID



 $\begin{array}{l} \mbox{Applied Flux } (\Phi_{\rm a}) \\ \mbox{Y-H. Lee et al., IEICE Trans. Electron. E88-C, (2005), 168.} \end{array}$

Two-Stage SQUID Readouts

- Low-noise, single-SQUID input stage, series SQUID array (SSA) output stage (or DROS)
- Voltage-biased input SQUID coherently modulates output SQUID array
- $\left|\partial V / \partial \Phi\right|_{array} \propto N$, $V_{n,array} \propto N^{\frac{1}{2}} \Longrightarrow S^{\frac{1}{2}}_{\Phi,array} \propto 1/N^{\frac{1}{2}}$
- Output gain G $\propto dV_{out}/dI_{in}$ >400 V/A allows direct coupling to room-temperature preamplifier
- Wideband operation ~120 MHz
- Eight-wire connection to input SQUID, SSA
- Parasitic resonances can be problematic
- High array input inductance
- High power dissipation
- S. Boyd (UNM/STARCryo) new class of arrays offering low input inductance, and low power dissipation

Applications

• Biomagnetism

- Magnetocardiography (MCG)
- Magnetoencephalography (MEG)
- Ultra-Low-Field MRI, combined ULF-MRI/MEG
- Super-Paramagnetic Relaxometry for Cancer Diagnostics
- Immunoassay for Diagnosis of Alzheimer's Disease
- (Immunoassay for Influenza Sobhan Sepehri et al., Chalmers Univ.)
- (Magnetospinography for spinal cord functional imaging Y. Adachi et al., KIT, Japan)
- Geophysics
- Non-Destructive Testing

- Acute myocardial infarction (AMI) a leading cause of morbidity and mortality worldwide.
- Treat within 70 minutes, or mortality and morbidity rise dramatically.
- MCG can provide definitive test results within minutes after admission with high negative and positive predictive values
- Sudden cardiac death (SCD) sudden, unexpected death caused by loss of heart function (sudden cardiac arrest); largest cause of natural death in the U.S., causing about 325,000 adult deaths in the U.S. each year. SCD is responsible for half of all heart disease deaths.
- Typical MCG signals: 1 to 100 pT, 0.1 to 100 Hz
- Fewer than 20 to 25 MCG systems installed worldwide
- Challenges
 - Ambient noise sources
 - Liquid cryogens
 - Competition from conventional technologies (e.g., SPECT, \$3M system cost, \$1B market in US)

Hitachi High Technologies Corp., Japan

MC6400

- 64 axial gradiometers, <20 fT/Hz^{$\frac{1}{2}$} (all channels)
- Liquid helium cooling
- Japanese insurance reimbursement since 2003
- In use at two hospitals in Japan
 - Tsukuba University Hospital since 2007.
 - National Cerebral and Cardiovascular Center, Osaka
- 100 patients per month average
- Total patients >10,000 between 2008 and 2016

Biomagnetik Park GmbH, Germany

CS-MAG II

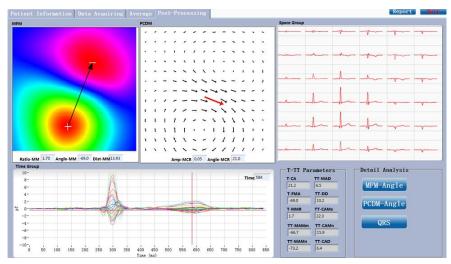
- 64-channel LTS axial gradiometers with DROS
- Liquid helium cooling
- Installations in Hamburg, Coburg, and Berlin, Germany; Hong Kong, China
- Approvals by CE, FDA, KFDA

Mesuron LLC, USA

Avalon-H90

- Liquid helium cooled
- Millisecond, high spatial resolution imaging of the heart within 90 seconds
- Targeting rapid diagnosis in emergency rooms
- Proprietary techniques to eliminate background noise

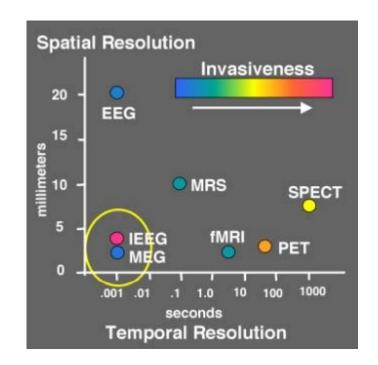
Cryoton Co. Ltd., Russia


MAG-SCAN

- 9 or 32 2nd order axial gradiometers
- 20-mm diameter, 55 mm baseline, 0.1% balance
- Unshielded operation
- 1 fT/Hz intrinsic, 20-40 fT/Hz installed
- Liquid helium cooled
- Software development by SOFTMAG Group, Kiev
- Approved for clinical Federal Service on Surveillance in Healthcare and Social Development of the Russian Federation

Shanghai Medi Instruments, Ltd., China

- 1st and 2nd order gradiometers, with reference magnetometers
- 4 channels, 9 measurement positions
- Liquid helium cooled
- Installed at two hospitals in China
- Over 1,000 patient exams for clinical trials
- >95% accuracy in terms of sensitivity, specificity, PPV and NPV


Indira Gandhi Centre for Atomic Research India

STAR CRYOELECTRONICS

- 37 channels, 1st order axial gradiometers
- Liquid helium cooled
- Located in two-layer MSR (70 db at 1 Hz, 100 dB at 10 Hz)
- ~11 fT/Hz^{1/2} average noise (all channels)
- Clinical studies of >150 patients

- Functional neuroimaging technique to map brain activity with high spatial and high temporal resolution
- Direct measure of brain function; fMRI, PET and SPECT are indirect and based on brain metabolism
- Typical MEG signals: 0.5 fT to 10 pT, up to 1 kHz
- Clinical applications
 - Epilepsy
 - Functional imaging (presurgical mapping)
 - Neurological and psychiatric diseases may be associated with abnormal brain oscillations
- Around 200 systems installed

Elekta, Finland

Neuromag TRIUX

- Array of 102 sensor locations
- Each location consists of two orthogonal planar gradiometers and one magnetometer, total of 306 channels
- No helium consumption
- 100 systems installed since 1989

CTF MEG International Services LP Canada

CTF MEG 275

- 151 or 275 axial gradiometers distributed over whole cortex (cMEG) or abdominal region (fMEG)
- Additional reference channels used for noise cancellation
- Synthetic higher-order gradiometers for rejecting magnetic noise outside the brain region
- Liquid helium cooled

Yokogawa Electric Corp., Japan

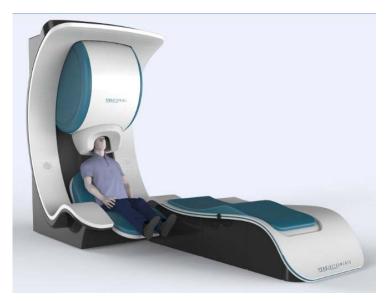
MEGvision

- 160, 1st order axial gradiometers
- Liquid helium cooling with autofill
- Low boil-off dewar design
- Operated in two-layer MSR
- Acquired by Ricoh, Japan, March 2016
- Projecting sales of \$437M by 2025

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 41, July 2017. This keynote presentation Tu-KEY-02 was given at ISEC 2017.

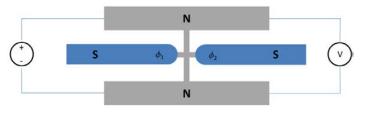
Magnetoencephalography

Compumedics Limited, Australia

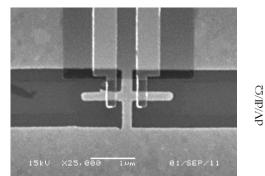


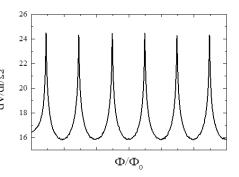
Orion LifeSpan[™] MEG

- LTS axial gradiometers with DROS
- No helium consumption
- Two MEG-in-one system design with dual adult/pediatric helmet options (192 ch. adult, 144 ch. pediatric)
- CURRY neuroimaging platform



York instruments, Ltd, UK


MEGSCAN


- Cooling via a vibration-free pulse tube
- 320 axial gradiometer or magnetometer sensors, 32 reference channels
- HyQUID sensor based on Andreev interferometer¹ with two SN contacts
- Current biased, dV/dI output is periodic with Φ

 $\Delta \mathbf{R} \propto 1 - \cos \phi$

¹V T Petrashov, V N Antonov, P Delsing, and T Claeson; Phys Rev Lett **74**, 5268 (1995); JETP Lett **59**, 551 (1994).

Ultra-Low-Field MRI

NMR of Protons

- For ensemble of N spins in field B_0 , $M_0 = N\mu_p^2 B_0/K_BT$
- Apply tipping field, spins precess with frequency $\omega_0/2\pi$, $\omega_0=\gamma B_0$ (Larmor frequency)
- Detect precessing magnetic moment using coil (Faraday) or SQUID (direct)
- M₀ relaxation times
 - Longitudinal (spin-lattice) T₁
 - Transverse (spin-spin) T₂; NMR linewidth $\Delta v=1/2\pi T_2$

SQUID NMR

- Signal scaling
 - Conventional coils: Signal $\propto \omega_0 M_0 \propto {B_0}^2$
 - SQUID: Signal \propto M_0 (or $\omega_{0})$
- Use of pre-polarization field $B_p \sim 100$ mT, $B_0 \sim 10-100 \mu$ T
- Inhomogeneous line broadening $\Delta v' = (\gamma/2\pi)(\Delta B_0/B_0)B_0$
 - Lower B₀ reduces field homogeneity requirements
- Lower system costs, greater portability

Combined ULF-MRI/MEG

Hybrid systems allow greater co-registration accuracy of MEG and MRI data

Equivalent dipoles and field patterns of visually-evoked responses using

- (a) the MEG–MRI system and
- (b) state-of-the-art MEG with the same stimulus protocol
- (c) MRI slices at 96 μ T, with the registered equivalent dipole of the auditory response overlaid
- (d) Uncoregistered 3 T image acquired separately from the same subject

R. Körber et al., Supercond. Sci. Technol. 29 (2016) 113001.

Combined ULF-MRI/MEG

BREAK

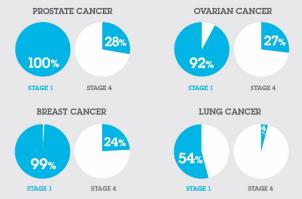
BREAKBEN - breaking the nonuniqueness boundary in electromagnetic neuroimaging

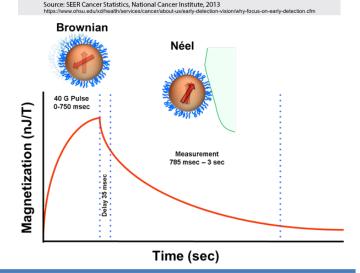
Combine accurate magnetic measurements of neural activity with near-simultaneous high-definition measurements of cerebral structure

Use ULF-MRI current-density imaging to provide conductivity information for improved accuracy of MEG source localization

Collaborators

Aalto University Hospital District of Helsinki and Uusimaa VTT University G. d'Annunzio of Chieti-Pescara Elekta PTB TU Ilmenau


Super-Paramgnetic Relaxometry (SPMR)


- \$100B global market for cancer diagnostics
- Early detection significantly reduces mortality rates

Super-Paramagnetic Relaxometry (SPMR)

- Bio-specific antibodies bound to nanoparticles cause binding to specific targeted tumor types
- Apply magnetizing pulse (e.g., ~40 G, 750 msec)
- Measure magnetization relaxation (~3 sec)
 - Unbound nanoparticles relax via Brownian motion (fast)
 - Néel relaxation of nanoparticles bound to tumor cells is slow and measurable

5-year survival rate, depending on **early** or **late** diagnosis:

Super-Paramgnetic Relaxometry (SPMR)

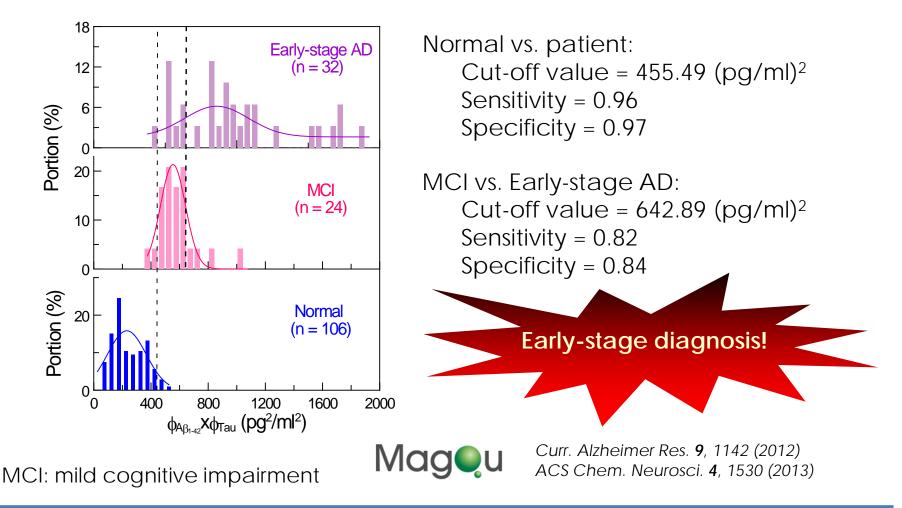
Imagion Biosystems, USA

- Liquid helium dewar
- Ring of six 2nd -order axial gradiometers
- Single central magnetometer for background elimination
 - Potential for sub-millimeter size tumor resolution
 - 1000x more sensitive than current imaging methods


Method	MagSense Magnetic Relaxometry	MRI Magnetic Resonance Imaging	PET Positron Emission Tomography	Ultrasound	X-Ray/CT
Detection Threshold	< 1 million cells	millions of cells	NA	4 billion cells	NA
Quantitative	Yes	Yes	No	No	No
Specificity	Yes	No	No	No	No

Immunoassay

MagQu, Taiwan


XacPro-S361

- AC magnetosusceptometer for ultra-sensitive immunoassay
- High-Tc SQUID magnetometer
- Clinical Application -Diagnosis of Alzheimer's Disease
- Four installations
 - National Taiwan University Hospital
 - National Taiwan Normal University
 - Arizona State University
 - Bio-Check Biotech Co., Ltd.

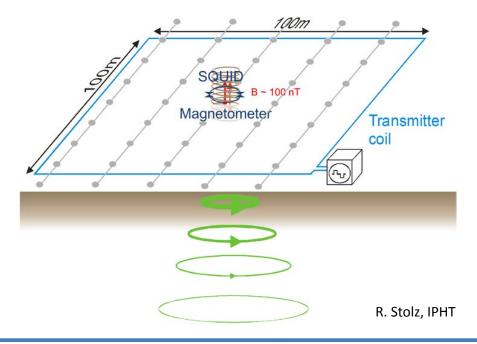
Immunoassay

$A\beta_{1-42}$ x Tau in plasma: Normal vs. MCI vs. Early-stage AD

New Technology Trends for Biomagnetism

Sensor and Dewar Technology Developments

- Development of ultra-sensitive magnetometers with resolution ~0.1 fT/Hz^{1/2}, comparable to the Nyquist noise of the human body
 - Improved thermal shielding to reduce background noise of LHe dewar (e.g., PTB magnetometer with alumina thermal shields, aluminized polyester textile MLI, 45-mm diameter pickup loop, ~150 aT/Hz)
 - Development of low capacitance, submicron junctions (e.g., IPHT cross-type junctions)
- Development of HTS magnetometers/gradiometers for MEG
 - HTS will reduce thermal shielding requirements; shorten sensor standoff distance
 - Sensor array can be better matched to head size (male/female, adult/child/newborn)
 - Development of wafer-scale processes for high-quality junctions and multilayer flux transformers needed
- Development of microcoolers
 - Enabling the development of low-cost, portable tools for immunoassays


Applications

- Biomagnetism
- Geophysics
 - Transient Electromagnetics (TEM) for Mineral Exploration
 - Ionospheric Detection
 - (HTS Borehole Logging T. Hato et al., SUSTERA, Japan)
- Nondestructive Testing

Transient Electromagnetics (TEM)

- Measurement of the electric resistivity of the subsurface for mineral exploration
- SQUID-based systems can distinguish between ore and conductive overburden with sharper contrast, greater depth sensitivity than achievable using induction coils
- Discovery and localization of large ore deposits worth billions of dollars using SQUIDbased systems since 2001

Transient Electromagnetics (TEM)

- LANDTEM (2001)
 - CSIRO (Australia) HTS RF SQUID system
 - Commercial collaboration with Outer-Rim Exploration Services
 - Localization of large deposits of nickel sulphide and silver worth hundreds of millions of dollars
- JESSY DEEP (2003)
 - IPHT/Supracon (Germany), LTS and HTS SQUID systems
 - more than 20 systems in worldwide operation

- SQUITEM-3 (2013)
 - SUSTERA (Japan)
 - Ramp-edge junctions (La_{0.1}Er_{0.95}Ba_{1.95}Cu₃O_y / SmBa₂Cu₃O_y)
 HTS multi-layer process
 - 30 fT/Hz^{$\frac{1}{2}$} white noise (f > 1 kHz)

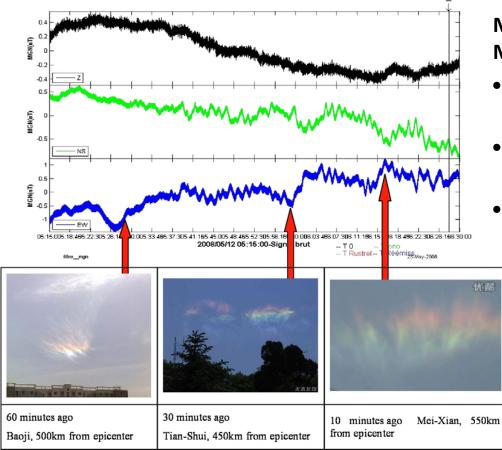


Ionospheric Detection

Low Noise Underground Laboratory of Rustrel (France)

- [SQUID]² = SQUID with Shielding Qualified for Ionosphere Detection
 - Housed in underground former missile control center capsule
 - LTS vector magnetometer, <3 fT/Hz^{$\frac{1}{2}$} for f > 40Hz
- Detection of magnetic storms, TLE sprites, ELVES, solar eruptions, mesopause excitations, Earth breathing modes, ...
- Possible observation of earthquake precursors

LSBB Rustrel – located 518 meters under mountain



[SQUID]² System

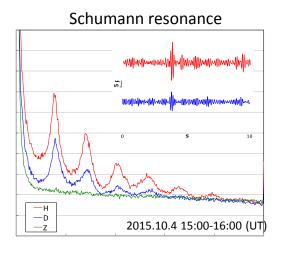
Ionospheric Detection

Low Noise Underground Laboratory of Rustrel (France)

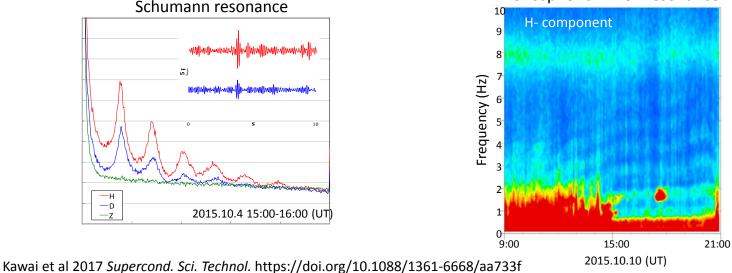
M 8.1 Sichuan-Wenchuan Quake May 12, 2008

- Jumps in EW trace 60, 30 and 10 minutes before quake
- Electric field produced by precursor piezo-electric effects
- Time coincident "Rainbow clouds" observed away from epicenter

G. Waysand et al., C. R. Physique 12, (2011) 192.


Ionospheric Detection

Kanazawa Institute of Tech. (Japan)


- Three LTS magnetometers
 - 2.2 x 2.2 mm² pickup loop -
 - $30 \text{ fT/Hz}^{\frac{1}{2}}$ white noise -
 - **Direct readout electronics** -
 - 33L LHe dewar, 30-day operation -

3-axis SQUID magnetometer

Applications

- Biomagnetism
- Geophysics
- Non-Destructive Testing
 - Materials Characterization
 - Integrated Circuit Inspection
 - Defect and Failure Analysis
 - (Food Inspection S. Tanaka, Toyohashi Univ., Japan)

Materials Characterization

SQUID-based measurements of magnetic properties as a function of magnetic field and temperature

Over 1,000 SQUID magnetometers sold since 1984 (>\$200M in commercial revenues)

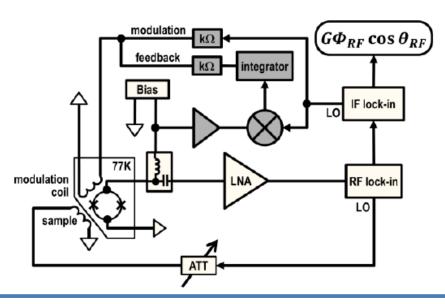
S700X SQUID Magnetometer

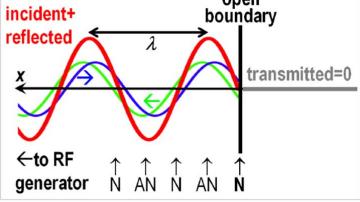
Magnetic Property Measurement System (MPMS[®]3)

Rock Magnetometry

William S Goree, Inc (USA)

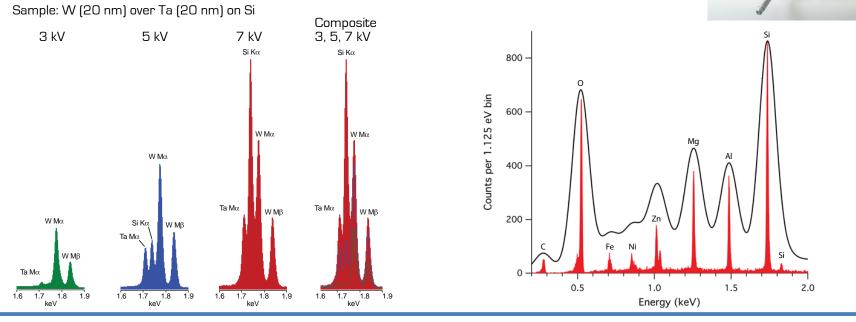
- Rock magnetometer for palaeomagnetism studies of the record of the Earth's magnetic field in rocks, sediments, or archeological materials
- Originally produced by 2G Enterprises, Inc.
- LTS SQUID system with PT cryocooler
- Magnetic Dipole Moment Noise <10⁻¹² A/m²
- More than 135 systems installed since ~1984


MODEL 755 & 760-4K Rock Magnetometer


Circuit Inspection

Neocera LLC, USA

- Scanning SQUID microscope with HTS DC SQUID
- Readout electronics sense coherent magnetic fields up to 2 GHz
- Open circuit acts as a transmission line with node at open end



Defect and Failure Analysis

STARCryo MICA-1600 Energy Dispersive X-Ray Spectrometer

- 4x4 array of 0.5 mm² TES microcalorimeter detectors
- Two-stage SQUID readout for each channel, with SSAA output stage
- Energy resolution <10 eV FWHM at Si K_{α} (1.7 keV)
- Maximum count rate up to 10 kcps
- Cryogen-free, automated cryostat operation

Applications

- Biomagnetism
- Geophysics
- Non-Destructive Testing
- Basic Research
 - Astrophysics Cosmic Microwave Background (CMB) and X-Ray Observatories
 - (SQUID-Based Magnetic Microscopy)

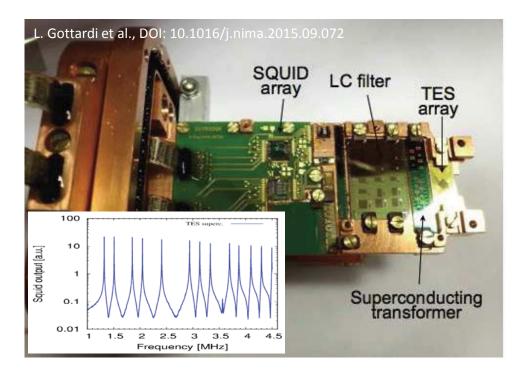
Astrophysics Research

Cosmic Microwave Background "Stage-4" Experiments (CMB-S4)

- New instruments planned for astrophysical surveys having large focal plane arrays of ~100,000 superconducting detectors
- Tens of thousands of low-noise cryogenic amplifiers are required for frequency domain multiplexed readouts

POLARBEAR on 3.5 m Huan Tran Telescope, Chile

- Detection of B-mode CMB polarization to test inflation
- Determine limits on neutrino mass
- Constraints on the nature of dark energy
- Tests of general relativity on large scales



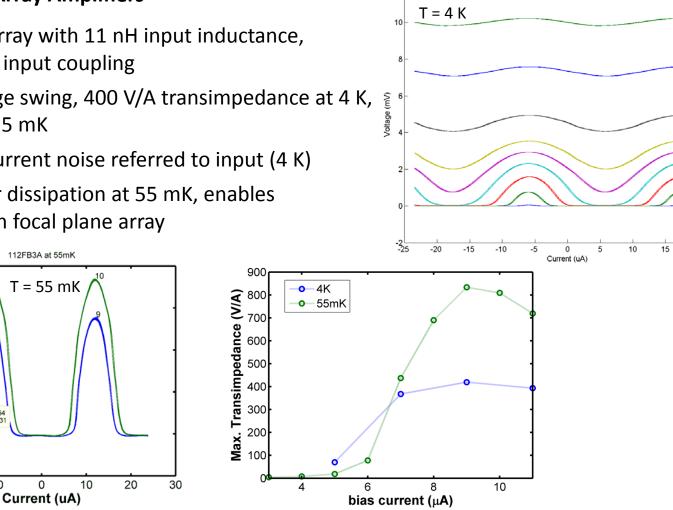
Astrophysics Research

X-Ray Observatories

Advanced Telescope for High-Energy Astrophysics (Athena)

3,840 TESs coupled to X-ray absorbers and read out in 1-5 MHz bandwidth using Frequency Domain Multiplexing (FDM)

X-ray Integral Field Unit (X-IFU) SRON/VTT and NASA-GSFC/NIST


- Each pixel is separated in frequency space by high-Q superconducting LC filter
- Requires amplifiers with low input inductance, low flux noise, high-dynamic range and low power consumption.

Cryogenic Amplifiers for Detector Readouts

Series SQUID Array Amplifiers

- 112-SQUID Array with 11 nH input inductance, 23.6 µA/Phio input coupling
- 2.4 mV voltage swing, 400 V/A transimpedance at 4 K, ۲ ~800 V/A at 55 mK
- 5.9 pA/Hz^{$\frac{1}{2}$} current noise referred to input (4 K) ۲
- <5 nW power dissipation at 55 mK, enables integration on focal plane array

-20

X: -16.74 Y: 0.4325

X: -15.54 Y: 0.3631

-10

0

1.5

0.5

-0.5 -30

Voltage (mV)

13

20

25

Summary

- The market outlook for LTS SQUIDs is strong, with compelling applications in biomagnetism and key scientific applications in astrophysics research
- State-of-the-art HTS SQUIDs are well-suited for high-impact applications in geophysics and immunoassays
- The market for HTS SQUIDs will likely expand, if reliable, high-yield, wafer-scale processess can be developed for multilayer SQUIDs with <<50 ft/Hz at frequencies <<1 kHz

Acknowledgements

Yoshiaki	Adachi	Kanazawa Inst of Tech	Yuri	Maslenikov	Cryoton
Alexander	Bakharev	Mesuron	Andrei	Matlashov	IBS
Zhi Liang	Вао	MEG International	Brian	Moeckly	STAR Cryoelectronics
Joern	Beyer	РТВ	Xuan	Ni	Shanghai Medi Instruments
Stephen	Boyd	Univ. of New Mexico	Masataka	Okhubo	AIST
Chris	Checkley	York Instruments	Antonio	Orozco	Neocera
Michelle	Espy	LANL	Curtis	Ponto	Compumedics
Michael	Faley	FZ Juelich	Elizabeth	Pozo	LSBB
Cathy	Foley	CSIRO	Robert	Proulx	Imagion
К	Gireesan	IGCAR	Sobhan	Sepehri	Chalmers
Carmine	Granata	CNR Naples	Saburo	Tanaka	Toyohashi Univ.
Tsunehiro	Hato	SUSTERA	Gen	Uehara	Kanazawa Inst of Tech
Martin	Huber	Univ. of Colorado	Jonathan	Williams	NPL
Jun	Kawai	Kanazawa Inst of Tech	Dag	Winkler	Chalmers
Mikko	Kiviranta	VTT	Charles S.Y.	Yang	MagQu
Yong-Ho	Lee	KRISS			

