The Status and Future of Johnson Noise Thermometry

Jifeng Qu (qujf@nim.ac.cn)
National Institute of Metrology (NIM), China
2016.6.28, Tempmeko@Zakopane
Outline

1. Johnson noise thermometry
2. Absolute measurement
3. Different implementations and applications
4. Conclusion
Outline

1. Johnson noise thermometry
2. Absolute measurement
3. Different implementations and applications
4. Conclusion
Johnson noise

- random thermal motion of electrons in a conductor causes both electrical resistance and a fluctuating voltage
- predicted by Einstein in 1906, measured by Johnson in 1927, and theoretically described by Nyquist in 1928
- fluctuation-dissipation theorem

\[S_R = 4hfR \left[\frac{1}{2} + \frac{1}{\exp(hf / kT) - 1} \right] \]

\[\langle V^2 \rangle = 4kT R \Delta f \]
Johnson noise thermometry

Pros:
- pure electronic measurement of thermodynamic temperature
- immune from chemical and mechanical changes in the material properties
- periodic calibration is not necessary

Cons:
- extremely small voltage, 100 ohm, 273K, \(\sim 1.2 \text{nV}/\sqrt{\text{Hz}}\) (amplify by \(10^5\))
- random, very long time integration \(\sigma \sim 1/\sqrt{t}\) (weeks or months)
- distributed over wide bandwidths \(\sigma \sim 1/\sqrt{\Delta f}\) (a few hundred kHz)
Switching correlator

- four wire connection defines the source impedance
- eliminates uncorrelated noise by cross-correlation
- eliminates the effect of amplifier gain drift by switching
- impossible to match both the noise power and frequency response
- affected by electronic nonlinearity or narrow bandwidth
- relative measurement, uncertainty limited to 10^{-5}

\[
\frac{T}{T_{\text{ref}}} = \frac{\langle V^2(T) \rangle}{\langle V_{\text{ref}}^2 \rangle} / R
\]

H. Brixy, Nucl. Instrum. Methods, 97, 75-80 (1971)
Outline

1. Johnson noise thermometry
2. Absolute measurement
3. Different implementations and applications
4. Conclusion
Primary thermometry

- primary gas thermometry limited by non-ideal properties of real gas
- JNT uses electron gas
- pure electronic approach, attracting increasing interest

Joachim Fischer, Metrologia 52 S364, 2015
Early attempt to measure k_B

To achieve 10 ppm in k_B determination:

- 5 additional connections for calibration
- keep the temperature of all electronics constant within 0.02 K
- measure the divider factors with uncertainty less than 0.5 ppm
- accumulate data for more than 1 year!
Digital signal processing in frequency domain

\[V_T(f) + V_{n1}(f) \]

\[V_T^*(f) + V_{n2}^*(f) \]

Brixy introduced fast and accurate ADC to JNT

Digital signal processing in frequency domain

Bandwidth can be defined accurately

H. Brixy et. al., Temperature: It’s measurement and control in science and industry, vol 6, 993 (1992)
Quantum voltage noise source

Josephson Pulse Quantizer

Variable Input

Quantized Area $h/2e$

\[
\int V(t)dt = \frac{h}{2e}
\]

- Samuel Benz, Clark Hamilton (NIST)
- quantum accurate ($\ll 1$ ppm up to 4 MHz)
- calculable PSD
- arbitrary distribution

Quantum voltage calibrated noise thermometer

Johnson noise

Quantum voltage noise

\[S_V \quad \rightarrow \quad K_J^2 = \frac{4e^2}{h^2} \quad \rightarrow \quad S_T \quad \rightarrow \quad R_K = \frac{h}{e^2} \]

\[k = \left| \left\langle \frac{V_R^2}{V_Q^2} \right\rangle \right| \bigg|_{f=0} \quad \frac{\left\langle V_Q^2 \right\rangle_{\text{cal}}}{4TR} \]

John, Martinis (NIST)
Electronic measurement of k_B

- NIST reported first electronic measurement of k_B with $u_r = 12.1 \times 10^{-6}$
- NIM/NIST collaboration, $u_r = 3.9 \times 10^{-6}$
- CCT required at least two methods with $u_r < 3 \times 10^{-6}$ to redefine the kelvin
- NIST, NIM, NMIJ, pursuing even lower uncertainty

CODATA 2010 k_B input data

Mohr et al., Rev. Mod. Phys. 84 1527 (2012)
Benz et al., Metrologia 48 142 (2011)
QVNS-JNT system

\[S_R = 4kT_W X_R R_K \]

\[S_{Q\text{-calc}} = D^2 N_J^2 f_s M / K_J^2 \]

\[k = \frac{D^2 N_J^2 f_s M}{4T_W X_R R_K K_J^2} \frac{\langle S_R \rangle}{\langle S_Q \rangle} \]

Qu et al., *Metrologia* 52 S242 (2015)
Shielding and grounding

- underground screened room
- shielding with aluminum and high-permeability nickle-alloy boxes
- powered by batteries
- eliminate ground loop

Measured spectra of the synthesized quantum noise waveform with (upper) and without (lower) observable EMI, blue green, and red are auto-correlation in each channel, and correlation spectra, respectively, and black × is the synthesized tones.
Effect of nonlinearity

- nonlinearity introduces significant errors
- PSDs are the same, Gaussian distribution, uncorrelated noise power are the same
- change the voltage of QVNS without changing any other parameters to measure the nonlinearity effect
- ~0. 4×10^{-6} error for 1% mismatch
Match the noise sources and transmission lines

- insert uncorrelated resistor to match both the noise powers and impedances
- insert trimming inductance and capacitance to match the transmission lines
Measurement result

Each measurement integrated for about 15-20 hours

45 measurements accumulated
Polynomial fit

- short connections-lumped components
- even-order polynomial fit
- increase bandwidth
- uncertainty increase with the number of fitting parameters
- ambiguity–which model to use?

\[
R(f) = \frac{S_R}{S_Q} \left(1 + a_2 f^2 + a_4 f^4 + a_6 f^6 + \ldots \right)
\]
contour plot of total uncertainty versus model complexity and bandwidth

cross-validation method (Kevin, Coakley et. al., arXiv:1606.05907)

select the optimal polynomial model and bandwidth by minimizing the uncertainty that accounts for both random and systematic effects
Uncertainty Budget

\[
\frac{(k_B - k_B^{2010})}{k_B^{2010}} = +1.8 \times 10^{-6}
\]

<table>
<thead>
<tr>
<th>Component</th>
<th>(u_r / 10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>3.2</td>
</tr>
<tr>
<td>Correction Model ambiguity</td>
<td>1.8</td>
</tr>
<tr>
<td>Dielectric losses</td>
<td>1.0</td>
</tr>
<tr>
<td>EMI</td>
<td>0.4</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>0.1</td>
</tr>
<tr>
<td>(R) measurement</td>
<td>0.53</td>
</tr>
<tr>
<td>TPW</td>
<td>0.35</td>
</tr>
<tr>
<td>QVNS waveform</td>
<td>0.1</td>
</tr>
<tr>
<td>(u_r(k_B))</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Qu et al., *Metrologia* 52 S242 (2015)
What’s next?

Problems to solve:
- drifting trend, probably caused by instability of the stray impedance
- the stray inductance dependent on both frequency and temperature
- thin, low TCR, coax cable
What’s next?

Problems to solve:
- match source impedance to the transmission line characteristic impedance
- four channel system to halve the measurement time (NIST)

Uncertainty limitation?
- fundamental limitation?
- practical limitation
 - bandwidth
 - time (1000 h for 3 ppm, 1 year for 1 ppm!)
What’s next?

High temperatures
- different fixed-point temperatures of Zn, Ag, Cu and Pd (PTB)
- uncertainty < 0.004% has been demonstrated up to 800 K (NIST)
- $T-T_{90}$, by NIST, NIM, NMIJ, PTB
- could be competitive in 600-1000 K with AGT and radiation thermometry

SQUID-based noise thermometer

Kamper, Zimmermann, JAP 42 (1971), 132

- R-SQUID noise thermometer

- Current Sensor Noise Thermometer

- Magnetic Field Fluctuation Thermometer

1 mK – 5 K, thermodynamic temperature
Tuned-RLC noise thermometer

\[\text{ENBW} = \frac{1}{4RC} \]

\[\langle V^2 \rangle = \frac{kT}{C} \]

Pepper, Brown, J Phys. E, 42 (1979), 31

- the noise amplitude is determined by a capacitor
- resistance measurement is not necessary
- inductively coupling allows non-contact measurement
- steel industry
Dual noise-thermocouple thermometer

- Combine noise and thermocouple thermometry
- Proposed by Brixy for use in nuclear plant or space satellite power system
- Calibration in situ
- Recently demonstrated up to 1450 °C at PTB
- Uncertainty of 0.1% under lab conditions, and double under industrial conditions

Dual noise-resistance thermometer

- single sensor, fast resistance mode or slow noise thermometry mode
- continuous AC signal is used to calibrate

from David Holcomb, ORNL
Practical noise thermometer

Inject precision current as calibration signal

- 5 kΩ sensor, 1MHz bandwidth
- Standard deviation 0.14°C at 20 °C

(from Paul Bramley of Metrosol)
Possible new applications

- remaining challenges: strong EMI, harsh environments
- rapid progress of electronics made it viable for industry

- suited for high-temperature, high accuracy applications:
 - next generation of nuclear power plant (~850 °C)
 - emission controls (0.1 °C @ ~850 °C)
 - aerospace (satellite with significant solar exposure, ionizing radiation)
 - high value manufacture (turbine, technical ceramics)
Outline

1. Johnson noise thermometry
2. Absolute measurement
3. Different implementations and applications
4. Conclusion
Summary

- purely electronic approach, appealing alternative to other primary thermometry
- technology breakthroughs (switch correlator, ADC, QVNS) made it possible to contribute to the redefinition of kelvin
- could be competitive with AGT and radiation thermometry in range of 600 K - 1000 K
- different implementations have been demonstrated under lab conditions, cover temperature from millikelvin to over 1500 °C
- high temperature, high accuracy applications in industry becoming more practical
Acknowledgement

- **NIST:** Samuel Benz, Kevin Coakley, Alessio Pollarolo, Horst Rogalla, Weston Tew

- **MSL:** Rod White

- **PTB:** Frank Edler, Alexander Kirste,

- **NPL:** Jonathan Pearce

- **Metrosol Limited:** Paul Bramley
Thanks for your attention!