Low-Cost Fan-Out with SFQ Cell Labeling

Jennifer Volk1,2, George Tzimpragos3, Alex Wynn2, Evan Golden2, Tim Sherwood3

1University of California Santa Barbara, Santa Barbara, California, USA
2Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA
3University of California Santa Barbara, Santa Barbara, California, USA

E-mail: jevolk@ucsb.edu

Abstract—Superconductor electronics (SCE) promise computer systems with orders of magnitude higher speeds and lower energy consumption than their complementary metal-oxide semiconductor (CMOS) counterpart. At the same time, the scalability and resource utilization of superconducting systems are major concerns. Some of these concerns come from device-level challenges and the gap between SCE and CMOS technology nodes, and others come from the way Josephson Junctions (JJs) are used. Towards this end, we notice that a considerable fraction of hardware resources are not involved in logic operations, but rather are used for fan-out and buffering purposes. In this paper, we ask if there is a way to reduce these overheads; propose the use of JJs at the cell boundaries for improved fan-out; and establish a set of rules to discretize critical currents in a way that is conducive to this reassignment. Finally, we demonstrate the accomplished gains through detailed analog simulations and modeling analyses. Our experiments indicate that the introduced method leads to a 48% savings in the JJ count in a tree with a fan-out of 1024, as well as an average of 43% of the JJ count for signal splitting and 32% for clock fan-out in ISCAS'85 benchmarks.

Keywords (Index Terms)—Superconductor electronics, SFQ, design abstraction, design methodology

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 1EPo2E-05

given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.