Superconducting Metamaterials

P. Jung¹, S. Butz¹, N. Maleeva^{1,2}, A. Averkin², N. Abramov², K. Shulga^{2,3},
V. P. Koshelets^{2,4}, L. V. Filippenko^{2,4}, V. Chichkov², A. Karpov², S. V. Shitov^{2,4},
V. V. Ryazanov^{2,3}, and <u>A. V. Ustinov^{1,2,3}</u>

¹Karlsruhe Institute of Technology (KIT), Germany
 ²National University of Science and Technology (MISiS), Moscow, Russia
 ³Russian Quantum Center (RQC), Moscow, Russia
 ⁴Kotel'nikov Institute of Radio Engineering and Electronics (IREE), Moscow, Russia

E-mail: Alexey Ustinov

Abstract — Metamaterials are artificial engineered media that enable tailored interactions with electromagnetic waves. The design flexibility of superconducting thin-film resonators and Josephson circuits allows for utilizing small structures down to the nanoscal while maintaining low loss properties, very strong and well-controlled nonlinearity, and frequency tunability in the microwave and mm-wave frequency ranges. An interesting spin-off here is going to be quantum metamaterials comprised of arrays of superconducting qubits.

Keywords (Index Terms) — Metamaterials, meta-atoms, Josephson junctions, SQUIDs, qubits, superconducting resonators, cloaking.