Multichannel on-scalp MEG based on high-Tc SQUID magnetometers

*Dag Winkler1, Justin F Schneiderman2, Alexei Kalabukhov1, Maxim Chukharkin1, Minshu Xie1, Silvia Ruffieux1, Christoph Pfeiffer1

Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Sweden1
MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy and the University of Gothenburg, Sweden2

Recent development of high-\(T_c \) SQUID magnetoencephalography (MEG) has shown the potential of the technique both as a possible replacement for the traditional low-\(T_c \) systems [1-5] and for increased information capacity from the close proximity to the brain [6]. SQUID magnetometers made from single layer high-\(T_c \) superconductors usually have an order of magnitude or more higher noise than their multilayer low-\(T_c \) counterparts. However, for MEG applications, the simpler cryogenic requirements make it possible to decrease the sensor-to-head distance from 20 mm to approximately 1 mm, retaining the signal-to-noise ratio. Furthermore, higher spatial resolution could be obtained and higher moments of the sources could be resolved from near-field measurements. Here, we report on benchmarking of high-\(T_c \) vs. low-\(T_c \) MEG and on the development of a multichannel high-\(T_c \) MEG system. The system is configured with a densely-packed set of seven 8.6 mm x 9.2 mm high-\(T_c \) SQUID magnetometers positioned in a slightly concave hexagonal pattern on a sapphire window connecting thermally to a liquid nitrogen bath. A method of direct feedback injection to the SQUID loops was chosen to minimize crosstalk between the sensors. To improve the field sensitivity, we have developed a new method to produce high-\(T_c \) flux transformers for flip-chip arrangements for the next generation MEG system. Finally, we are investigating the possibility to use high-\(T_c \) nano-wire based SQUIDs as magnetometers for MEG in future systems.

Keywords: magnetoencephalography, high-\(T_c \), SQUID, on-scalp