IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), April 2017. Poster presentation at KRYO 2016. No manuscript was submitted for hardcopy journal publication.

Additive Manufacturing of 3D Ceramic Structures for Electronic Applications of YBa₂Cu₃O₇

B. Hampel, M. Martens, T. Trame, M. Temming, F. Ludwig, and M. Schilling

Motivation

Technische

Universität

Braunschweig

- Multichannel dc-SQUID systems have to be mounted inside a cryostat to be operated below T_c
- SQUIDs have to be encapsulated to prevent aging of the HTS materials
- Additive manufacturing offers the opportunity to develop arbitrary structures for sample holders and SQUID capsules to address problems of conventionally manufactured systems

Printing Superconducting Ceramics

- 3D-printed ceramic holders for SQUID capsules provide higher rigidity, better thermal insulation and water tightness with suitable materials
- SrTiO₃ as a substrate for YBa₂Cu₃O₇ is chosen due to the very good matching lattice constants, thermal expansion coefficients and negligible interdiffusion

Extruding ceramic paste

 HTS materials can be printed to implement the SQUID wiring into the sample holders and the capsules

3D-Printing Gradiometer Modules

SQUID stability in water-vapor atmosphere

- Humidity sensor SHT11 from Sensirion AG, Switzerland
- Mounted in SQUID capsules made of PLA, Pertinax®, GFK, PETG, PEEK, PTFE, PPS
- Humidity: 95%
- Temperature: 25 °C
- Test duration: 70 hours
- Relative changes of humidity compared to environmental values are depicted in Fig.1
- We demonstrated low noise operation of sensitive dc-SQUID magnetometers with these materials [2], [3]
- A corresponding noise spectrum is depicted in Fig. 2
- Noise level: $\sqrt{S_B}(77 \text{ K}, 10 \text{ Hz}) = 70 \text{ fT}/\sqrt{\text{Hz}}$
- The corresponding magnetic gradient noise

- SrTiO₃ as stoichiometric powder 99+% (metal basis) was dispersed in polyethylene glycol 200 (both Alfa Aesar)
- YBa₂Cu₃O₇ is prepared by milling of the stoichiometric compounds and by dispersing the powder in 1,2 Propandiol (Henry Lamotte) or in polyethylene glycol 200 (Alfa Aesar)
- The ceramic pastes are processed with the ceramic paste extruder

Sintering process

- The printing and drying processes are succeeded by mandatory sintering in an oxygen atmosphere to restore oxygen stoichiometry
- SrTiO₃ is sintered for 3.5 h at 1300 °C
- YBa₂Cu₃O₇ is sintered for 12 h at 950 °C

Test objects

- The electrical properties of 3D-printed YBa₂Cu₃O₇ lines are measured on a cubic and a planar structure (Fig. 6)
- On the cubic structure the YBa₂Cu₃O₇ lines are printed around the edges which cannot be achieved by other

Fig. 6: (a) 3D-printed cube of 1 cm side length with 3D-printed superconducting YBa₂Cu₃O₇ line around the edges of the cube (b) 3D-printed YBa₂Cu₃O₇ structure on a planar SrTiO₃ structure [1]

at 7 cm baseline of the electronic gradiometer is 10 fT/(cm \sqrt{Hz})

(a) (b)

Fig. 3: Extruder for (a) fused deposition of plastic filament and (b) ceramic paste extrusion [1]

Gradiometer modules

- Subtractively and additively manufactured electronic gradiometer arrangements for SQUIDs which can be mounted in different planes are depicted in Fig. 4
- Additive manufacturing allows arbitrary structures to reduce heat conduction by thin rod arrangements
- Subtractively and additively manufactured capsules for humidity protection of the HTS SQUID

Fig. 2: Spectral flux noise density for a dc-SQUID magnetometer in the multichannel system [1]

3D-printer

- 3D-print of PLA plastic materials with 3D-printer RF1000 from Renkforce GmbH, Germany (Fig. 3(a))
- 3D-print of ceramic materials with 3D-printer RepRap Mendel and an in-house developed ceramic paste extruder (Fig. 3(b))

Fig. 4: Holder for multichannel system produced by (a) conventional subtractive manufacturing and by (b) additive manufacturing [1]

manufacturing methods

Properties of 3D-printed ceramics

- Critical temperature: $T_c \approx 84 \text{ K}$
- Critical current: $I_c = 10 \ \mu A$
- Critical current density: $j_c(77 \text{ K}) < 1 \text{ A/cm}^2$
- Superconducting transition temperature is determined from temperature dependent resistance measurement
- Structural properties are investigated by scanning electron microscopy (Fig. 7)
- Further optimizations are necessary to increase the density of the 3D-printed YBa₂Cu₃O₇ and to achieve better electrical properties

Fig. 7: Electron micrographs of 3D-printed and sintered (a) $SrTiO_3$ and (b) $YBa_2Cu_3O_7$ [1]

magnetometers are depicted in Fig. 5

- Water tight and pressure resistant 3Dprinted containers have already been realized from Nylon® filament [4]
- Very versatile and inexpensive SQUID modules for gradiometer arrangements can be achieved with additive manufacturing

Fig. 5: (a) Conventional SQUID capsule for our multichannel system, (b) an opened capsule with a SQUID and (c) novel capsule produced by additive manufacturing [1]

Acknowledgement

We gratefully acknowledge support by the Braunschweig International Graduate School of Metrology B-IGSM and the DFG Research Training Group GrK1952/1 "Metrology for Complex Nanosystems". We acknowledge gratefully the measurements of water-vapor permeability of SQUID capsules by Karsten Nesbor and the 3Dprinting activities of Richard Düren and Qiankun Li.

References

B. Hampel et al.: "HTS Multimaterial Gradiometer Modules for YBa2Cu3O7 SQUID Systems", IEEE Trans. Appl. Supercond. 27, Issue 4, Art. No. 1602105 (2017).
H.-J. Barthelmess et al.: "HTS-Multichannel-System for Magnetocardiography and Magnetoencephalography", *Proceedings of the Biomag 2000 Conference*, 927 - 930 (2001).
H.-J. Barthelmess et al.: "Low-noise biomagnetic measurements with a multichannel dc-SQUID-System at 77 K", *IEEE Trans. Appl. Supercond.* 11, 657 - 660 (2001).
F. Lederle et al.: "Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen", *Prog. Addit. Manuf.* 1, 3–7(2016).

www.emg.tu-bs.de