Time-Resolved Optical Characterization of Proximized Nano-Bilayers for Ultrafast Photodetector Applications

L. Parlato(1), G. P. Pepe(1), D. Pan(2), C. De Lisio(1), V. Pagliarulo(1), A. Cosentino(1), N. Marrocco(1), D. Dalena(1), G. Peluso(1), A. Barone(1) and R. Sobolewski(2).

(1) CNR-INFM Coherentia and Università di Napoli “Federico II,” Dip. Scienze Fisiche, c/o Fac. Ingegneria, Piazzale Tecchio 80 – 80125 Napoli, Italy
(2) Department of Electrical and Computer Engineering and the Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627-0231
Corresponding author: e-mail: parlato@na.infn.it

Abstract - Time-resolved transient pump-probe spectroscopy measurements on proximized ferromagnet/superconductor (F/S) structures are presented. We focused our attention on both low and high critical temperature superconductors such as Nb and YBCO, while for F the weak-ferromagnetic alloy Ni\(_{0.48}\)Cu\(_{0.52}\) has been used. Dynamics of the electron-phonon relaxation process has been investigated as a function of both the temperature and the F-film thickness. In the case of NiCu/Nb bilayers a thin F overlayer reduces the bolometric component of the photoresponse, while in YBCO structures with NiCu faster relaxation times were measured. F/S nanobilayers are very attractive for the development of novel hybrid superconducting photodetectors.