Inversion of the Upper Critical Field Anisotropy in FeTeS Films

1 MPA-CMMS, Los Alamos National Laboratory, Los Alamos, 87545, NM U.S.A
2 Hiroshima University, Institute for Sustainable Sciences and Development, 739-8530 Higashi-Hiroshima, Japan
3 Kyushu Institute of Technology, Department of Material Science, 804-8550 Kitakyushu, Japan
4 AOT-IC, Los Alamos National Laboratory, Los Alamos, 87545, NM U.S.A
5 T-4, Theoretical Division, Los Alamos National Laboratory, 87545, NM U.S.A.
6 Nagoya University, Department of Energy Engineering and Science, 464-8603 Nagoya, Japan
7 Kyushu University, Department of Electrical and Electronic Systems Engineering, 812-8581 Fukuoka, Japan
8 CRIEPI, Electric Power Engineering Research Laboratory, 240-0196 Yokosuka, Japan
9 Kyushu University, Department of Materials Science and Engineering, Kyushu University, 812-858 Fukuoka 1, Japan
10 JST-TRIP, 305-0047 Tsukuba, Japan

* B. Maiorov and P. Mele equally contributed to this paper
Corresponding author: maiorov@lanl.gov

Abstract - We present the complete superconducting upper critical field (H_{c2}) – temperature (T) diagram of FeTeS films measured at three crystalline orientations ($H||c$, 45° and ab). We find that H_{c2} is almost isotropic in magnetic field orientations with $\mu_0H_{c2}(T=0)\approx30T$, and a transition temperature of $T_c\approx7K$. A small but clear H_{c2} angular anisotropy is observed, with a crossover around $T=0.7T_c$ from $H_{c2}(||c)<H_{c2}(||ab)$ for $T>0.7T_c$ to $H_{c2}(||c)>H_{c2}(||ab)$ for $T<0.7T_c$. This change in the anisotropy is similar to that observed in FeTeS and FeTeSe single crystals but occurs at a higher T/T_c for our film. We analyze the $H_{c2}(T)$ in terms of pair-breaking mechanisms and two-band superconductor theory. Understanding the inversion of H_{c2}, opens the possibility to adjust the effective anisotropy of superconductors for different applications.

Keywords - Fe SeTe films, iron-based superconductors, upper critical fields, anisotropy of superconductors

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013
Received October 17, 2013; Accepted October 22, 2013. Reference No. ST351; Category 5.
This manuscript was published by Superconductor Science & Technology (SuST, IOP) 27, No. 4, 044005, (2014).