Fabrication of the Superferric Cyclotron Gas-stopper Magnet at NSCL at Michigan State University

S. S. Chouhan\textsuperscript{1}, G. Bollen\textsuperscript{1}, J. DeKamp\textsuperscript{1}, M. A. Green\textsuperscript{1}, D. Lawton\textsuperscript{2}, C. Magsig\textsuperscript{1}, D. J. Morrissey\textsuperscript{2}, J. Ottarson\textsuperscript{2}, S. Schwarz\textsuperscript{2} and A. F. Zeller\textsuperscript{1}

\textsuperscript{1}Facility for Rare Isotope Beams, MSU, East Lansing, MI 48824
\textsuperscript{2}National Superconducting Cyclotron Laboratory, MSU, E. Lansing, MI 48824

E-mail: chouhan@frib.msu.edu

Abstract - The magnet for the cyclotron gas stopper is a newly designed, large warm-iron superconducting cyclotron sector gradient dipole. The maximum field in the centre (gap = 0.18 m) is 2.7 T. The outer diameter of magnet yoke is 4.0 m, with a pole radius of 1.1 m and $B^*\rho = 1.8 \text{ T m}$. The fabrication and assembly of the iron return yoke and twelve pole pieces is complete. Separate coils are mounted on the return yokes that have a total mass of about 167 metric tons of iron. This paper illustrates the design and the fabrication process for the cyclotron gas-stopper magnet that is being fabricated at MSU.

Keywords – magnet, superconducting magnet, iron-yoke superconducting magnet, gradient dipole magnet, cyclotron gas-stopper magnet