SQUID Basics

Dietmar Drung

Physikalisch-Technische Bundesanstalt (PTB)

Berlin, Germany

Outline:
- Introduction
- Low-Tc versus high-Tc technology
- SQUID fundamentals and performance
- Readout electronics
- Conclusion

SQUID status as of 2007
Introduction

The SQUID is an extremely sensitive detector of magnetic flux or of any physical quantity that can be converted into flux

- Magnetic field or field gradient
 Biomagnetism (MEG, MCG, magnetorelaxometry)
 Nuclear magnetic resonance (NMR, MRI)
 Non-destructive evaluation (NDE)
 Geophysical sounding
 SQUID microscopy
 Low-temperature noise thermometry (MFFT)

- Susceptibility
 Material sciences

- Electric current
 Readout of cryogenic radiation detectors (X-ray, VIS, Infrared, THz)
 Cryogenic current comparator (CCC) for realization of electrical units
 Low-temperature noise thermometry (CSNT)

- Mechanical displacement
 Gravitational wave detection
SQUID Materials and Fabrication

Common low-T_c material: Niobium

- Transition temperature $T_c = 9.2 \text{ K} = -264^\circ\text{C}$
- Typical operation at 4.2 K (liquid helium)
- 1970s: SQUIDs = machined bulk Nb cylinders
- Today: Reliable Nb-AlO$_x$-Nb process on wafer scale
 \rightarrow hundreds of SQUIDs in one run
- Virtually infinite lifetime, but caution:
 SQUID = ESD sensitive device!
 (ESD = electrostatic discharge)

Common high-T_c material: $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ (YBCO)

- High-T_c superconductivity discovered in 1986 by Bednorz & Müller
- Transition temperature $T_c \approx 92 \text{ K} = -181^\circ\text{C}$
- Typical operation at 77 K (liquid nitrogen)
- Very challenging material \rightarrow unsatisfactory junction technology
 \rightarrow multi-layer process very difficult
 \rightarrow no wafer-scale fabrication
Low-T_c SQUID vs. High-T_c SQUID

<table>
<thead>
<tr>
<th></th>
<th>Low-T_c</th>
<th>High-T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUID noise</td>
<td>Very low (++)</td>
<td>Low (+)</td>
</tr>
<tr>
<td>Chip fabrication costs</td>
<td>Low (+)</td>
<td>Very high (--)</td>
</tr>
<tr>
<td>Reliability & reproducibility</td>
<td>Very high (++)</td>
<td>Low (-)</td>
</tr>
<tr>
<td>Design flexibility</td>
<td>Very high (++)</td>
<td>Low (-)</td>
</tr>
<tr>
<td>Cooling efforts</td>
<td>Very high (--)</td>
<td>High (-)</td>
</tr>
</tbody>
</table>

→ **Simplified cooling is main advantage of high-T_c SQUID**

But: Customers do not like cooling at all
(unless it is “invisible” → cryocoolers → magnetic interference!)

Cooling to cryogenic temperatures is main restriction for SQUID use, but is accepted if performance is really needed

Example: Helium-cooled magnets in MRI systems
A SQUID is a superconducting ring interrupted by one or two regions of weak superconductivity, the Josephson junctions

1 JJ = rf SQUID

- rf voltage V_{rf} depends on flux Φ
- Preamp noise very crucial
- High pump frequency \rightarrow low noise
- 1970s: 30 MHz bulk Nb rf SQUIDs
- Today: \approx1 GHz high-T_c rf SQUIDs (Nb rf SQUIDs are “dying breed”)

2 JJs = dc SQUID

- dc voltage V_{dc} depends on flux Φ
- Noise usually lower than of rf SQUID
- High-T_c: dc bias \rightarrow 2...100 kHz ac bias
- Josephson effect: 10 μV dc \rightarrow 4.8 GHz ac \rightarrow might energize microwave resonances in parasitic L/C structures & cause excess noise by mixing in the nonlinear device
A SQUID is a superconducting ring interrupted by one or two regions of weak superconductivity, the Josephson junctions.

1 JJ = rf SQUID

Tank Circuit

\[I_{\text{rf}} \]

\[V_{\text{rf}} \]

2 JJ = dc SQUID

\[I_{\text{dc}} \]

\[V_{\text{dc}} \]

Period = flux quantum

\[\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} \text{ Vs} \]

No absolute field sensor!
SQUID Sensitivity

Example

50 µT Earth field in 1 mm² SQUID loop: $2.4 \times 10^4 \Phi_0$

Noise level of state-of-the-art dc SQUID: $1 \times 10^{-6} \Phi_0/\sqrt{\text{Hz}}$

→ rms noise in 1 Hz bandwidth: $10^{-6} \Phi_0 = 4 \times 10^{-11}$ of Earth field!

SQUID ≡ extremely sensitive, nonlinear flux-to-voltage converter

The SQUID has to be shielded very well from external fields! rf interference might completely suppress V-Φ characteristic!

Use perfect “Faraday cage” around all sensitive structures!
Sensitivity Enhancement

\[\Phi = B \times A \rightarrow \text{magnetic field sensitivity increases with loop area } A, \]
\[\rightarrow \text{make SQUID loop as large as possible!} \]

Problem: loop inductance \(L \) also increases with loop size, small \(L \) required for good flux noise!

Solutions:
1. **Multiloop SQUID** → many loops in parallel to reduce \(L \)
 → high sensitivity but limited design flexibility
2. Large pickup coil coupled to SQUID via **flux transformer**
 → standard scheme with high design flexibility
Example: PTB Low-\(T_c\) Multiloop Magnetometer

Peak-to-peak noise in 200 Hz bandwidth: \(0.9 \times \sqrt{200} \times 6 \text{ fT} = 76 \text{ fT}\)

Crest factor
(ratio peak-peak to rms)
Example: PTB High-Tc Magnetometer

\[\text{\approx 1 cm}^2 \text{ single-layer YBCO magnetometers: } 20-30 \text{ fT/}\sqrt{\text{Hz}} @ 77 \text{ K} \]

\[\text{\approx 1 cm}^2 \text{ multi-layer YBCO magnetometers: } \approx 10 \text{ fT/}\sqrt{\text{Hz}} @ 77 \text{ K} \]

Current record: 2.56 cm\(^2\) multi-layer \rightarrow 3.5 \text{ fT/}\sqrt{\text{Hz}} @ 77 \text{ K} \quad \text{M. I. Faley et al.,} \]

\[J. \text{Physics: Conf. Series} \textbf{43}, 1199-1202 (2006) \]
Some Signal Amplitudes

<table>
<thead>
<tr>
<th>Source</th>
<th>Amplitude (pT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral nerve signal (spine)</td>
<td>0.01</td>
</tr>
<tr>
<td>Low-(T_c) system noise (p-p in 200 Hz bandwidth)</td>
<td>0.2</td>
</tr>
<tr>
<td>Human brain</td>
<td>1</td>
</tr>
<tr>
<td>High-(T_c) system noise (p-p in 200 Hz bandwidth)</td>
<td>4</td>
</tr>
<tr>
<td>Human heart</td>
<td>50</td>
</tr>
<tr>
<td>Power line interference (“quiet” room)</td>
<td>(10^5)</td>
</tr>
<tr>
<td>Earth’s field (static)</td>
<td>(5 \times 10^7)</td>
</tr>
</tbody>
</table>

Environmental noise must be suppressed by factor >10^4

Shielded room: Expensive and massive (but simplifies system design)

Gradiometer:
- Low-\(T_c\) SQUID → Wire-wound gradiometer coils
- High-\(T_c\) SQUID → Electronic / software gradiometer
Flux Transformer Coupling

\[\frac{\delta \Phi}{\delta \Phi_p} = \frac{M_{in}}{L_{in} + L_p} \]

- Flux transfer into SQUID maximized for \(L_{in} = L_p \)
- Typical values: \(L \approx 100 \text{ pH} \), \(L_{in} \approx L_p \approx 1 \text{ µH} \), \(M_{in} \approx 10 \text{ nH} \)
- Noise levels of \(1 \text{ fT}/\sqrt{\text{Hz}} \) readily achievable
- SQUID inside superconducting Nb shield
 ("current sensor" with screw terminals for wire connection)
- Pickup coil can be adapted to specific application

\[17 \text{ mm} \]

Courtesy of

D.Drung, Kryo 2014
Flux Transformer Coupling

\[\Phi_p = \Phi_{p1} - \Phi_{p2} \]

- Flux transfer into SQUID maximized for \(L_{in} = L_p \)
- Typical values: \(L \approx 100 \) pH, \(L_{in} \approx L_p \approx 1 \) µH, \(M_{in} \approx 10 \) nH
- Noise levels of 1 fT/\(\sqrt{\text{Hz}} \) readily achievable
- SQUID inside superconducting Nb shield ("current sensor" with screw terminals for wire connection)
- Pickup coil can be adapted to specific application
- Gradiometric coil configurations for noise suppression (noise from remote sources equal in both coils \(\rightarrow \) suppressed signal source near one coil \(\rightarrow \) amplitude only slightly reduced)

\[\frac{\delta \Phi}{\delta \Phi_p} = \frac{M_{in}}{L_{in} + L_p} \]
Example: PTB Current Sensors

Input inductance $L_{in} \rightarrow 1 \text{ nH} \ldots 1.8 \text{ } \mu\text{H}$

Energy resolution $\varepsilon_c = S_i L_{in}/2 \rightarrow \approx 100 \text{ } h @ 4.2 \text{ K}$

Current noise $\sqrt{S_i} \rightarrow \approx 8 \text{ pA}/\sqrt{\text{Hz}} @ 3 \text{ nH}$

$\rightarrow \approx 0.2 \text{ pA}/\sqrt{\text{Hz}} @ 1.8 \text{ } \mu\text{H}$

$1/f$ corner frequency $\rightarrow \approx 4 \text{ Hz}$
Small-signal SQUID readout

Main problems:

- Very small voltage across the SQUID: $V_{pp} \approx 10...50 \, \mu V$
- Transfer coefficient $V_\Phi = dV/d\Phi$ depends on SQUID working point
- Very small linear flux range: $\Phi_{lin} << \Phi_0$

Example: Magnetometer with $1 \, \text{nT}/\Phi_0 \rightarrow$ Human heart signal $\approx 0.05 \, \Phi_0$
Power line interference $\approx 300 \, \Phi_0$

Main tasks of a SQUID electronics:

- Amplifies the weak SQUID voltage without adding noise
- Linearizes transfer function to provide sufficient dynamic range
Basic Flux-locked Loop (FLL)

Feedback flux counterbalances applied flux
- Output voltage V_f depends linearly on applied flux
- Large dynamic range possible (limit: A/D converter in data acquisition unit)
- Transfer function does no longer depend SQUID working point

Problems with direct readout:
- Low SQUID impedance → Bipolar preamp → high noise temperature
- $1/f$ noise of preamplifier contributes to system noise

→ Reason for the introduction of flux modulation

FLL with Flux Modulation

- Modulation frequency f_{mod} typically 100...500 kHz → Optimum JFET performance
- Wideband systems with f_{mod} up to 33 MHz were demonstrated

Flux Modulation vs. Direct Readout

Flux Modulation Readout:

(+) FET with low noise temperature can be used
(+) Preamplifier low-frequency noise is suppressed
(+) In-phase JJ critical current fluctuations are suppressed
(-) Modulation frequency limits bandwidth
(-) Needs smooth, well-behaved V-\(\Phi\) characteristics

→ **Standard scheme useful for most applications**

Direct Readout:

(+) High system bandwidth can easily be obtained
(+) Resonance-distorted V-\(\Phi\) characteristics manageable
(+) Electronics more compact than with flux modulation
(-) Preamplifier with low 1/f noise required
(-) More difficult to keep preamplifier noise low enough

→ **Particularly attractive for wideband systems**
Additional Positive Feedback (APF)

- Preamp voltage noise reduced by increasing V_{ϕ} with a cooled L-R circuit
 - APF circuit acts as small-signal preamplifier
 - Noise temperature $\approx 2 \times$ operation temperature
- Reduced linear range Φ_{lin} → Do not make APF gain unnecessarily high
- Current noise might be suppressed by bias current feedback (BCF)
- Simple feedback electronics → Well suited for multichannel systems
Simplified Model for FLL Dynamics

- **SQUID:** Infinitely fast but nonlinear flux-to-voltage converter
 Basic parameter: linear flux range $\Phi_{\text{lin}} = V_{pp} / V_{\Phi}$

- **Integrator:** Ideal one-pole integrator with gain proportional to $1/f$
 ($f_1 = \text{unity-gain frequency of open feedback loop}$)

- **Delay:** Represents delay on transmission lines plus phase shifts
 caused by electronic components and SQUID

 - **Flux modulation:** Matching transformer & demodulator (mixer)
 $\approx t_d \approx 100 \text{ ns} @ f_{\text{mod}} = 16 \text{ MHz}$

 - **Direct readout:** Preamp bandwidth & wires to the SQUID
 $\approx t_d \approx 15 \text{ ns} @ f_{3\text{dB}} = 20 \text{ MHz}$
Delay-time Limit

Loop delay limits unity-gain frequency f_1:

- Small $f_1 \rightarrow$ FLL with first-order low-pass response $f_{3dB} \approx f_1$
- Large $f_1 \rightarrow$ peak in frequency response (stability impaired)

$f_1 = \frac{0.08}{t_d} \rightarrow$ optimally flat frequency response with $f_{3dB} = 2.25 \ f_1$

4.2 K systems: ≈ 1 m distance between SQUID and FLL electronics $\rightarrow t_d \approx 10$ ns $\rightarrow \approx 20$ MHz is the maximum system bandwidth with room temperature FLL \rightarrow reduce distance between SQUID and FLL \rightarrow max. bandwidth with “cold” FLL
Example: PTB “Cold” FLL Demonstrator

- Complete FLL operated at 4.2 K
- Design with discrete SiGe transistors
- SQUID + FLL on $30 \times 20 \text{ mm}^2$ board
- Power dissipation $\approx 10 \text{ mW} @ 4.2 \text{ K}$ → keep low to minimize helium boil-off
- Extremely short loop delay $\approx 0.6 \text{ ns}$
- Very high FLL bandwidth $\approx 350 \text{ MHz}$
- Flux noise $0.35 \mu \Phi_0/\sqrt{\text{Hz}}$ (C3X16A)
- Fast step response and low distortion

![Graphs showing various waveforms and their characteristics.]

D.Drung, Kryo 2014
Conclusion

- Modern low-T_c SQUIDs are **extremely sensitive, versatile & robust**
- Main restriction: **operation at cryogenic temperatures**
- For specific applications, complete systems are available
 → biomagnetism, material sciences, etc.
- General purpose laboratory systems are also available
 → **user can design pickup coil for his specific application**
- User-friendliness greatly improved in the past decades
 → **systems fully computer controlled**