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Abstract—We extend the resistively shunted Josephson (RSJ)
junction circuit model originally proposed by Stewart and Mc-
Cumber to incorporate a frequency-dependent dielectric response
so that the influence of free carriers in the barriers can be taken
into account. The methodology that we have developed uses an it-
erative numerical technique to calculate the current–voltage (I–V)
characteristics of a Josephson junction with a barrier exhibiting
both dissipation and dispersion. We give detailed results for two
barrier materials with conductivities near the metal–insulator
transition: a conventional semiconductor with a relatively high
mobility and a strongly scattered defect solid. We show that the
incorporation of the dynamic response of free carriers in the bar-
riers of superconductor-normal-superconductor (SNS) junctions
significantly influences the dc I–V characteristics for the case of
material near the metal–insulator transition with high mobility.
Hysteretic anomalies occur at nonzero voltages in the I–V charac-
teristics associated with the barrier layer’s plasma frequency. The
resulting features, which we call critical regions, occur when the
dc junction voltage is equal to � 2 2 �2, where
is the barrier’s plasma frequency,� is the quasi-particle scattering
rate, is an integer, and � is the reduced Planck’s constant. We
also show that our results for SNS junctions with a low-mobility
barrier material are essentially identical to the predictions of
the simpler RSJ model. Since the method we develope can solve
the nonlinear junction equations for a barrier with an arbitrary
complex conductivity, it is also capable of including other relevant
processes within the barrier, including the influence of excita-
tion from shallow defects or very soft phonon modes, as well as
boundary resistances.

Index Terms—Circuit modeling, Josephson junctions, nonlinear
equations, superconductor-normal-superconductor (SNS) devices.

I. INTRODUCTION

THE resistively shunted junction (RSJ) model first proposed
by McCumber [1], [2] and Stewart [3] is widely used to

calculate the current–voltage (I–V) characteristics of Josephson
junctions. The RSJ model of the junction contains a capacitor ,
a resistor , and a current source. The current source represents
the Josephson current , where is the maximum critical
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current of the junction and is the gauge-invariant phase dif-
ference across the junction. The shape of the junction’s dc I–V
characteristics [solid curves in Fig. 1(a)] depends only on the
parameter , where is the electron charge
and is the reduced Planck’s constant. The of a junction can
be determined by equating the amount of hysterisis in the mea-
sured I–V characteristics with the theoretical results in Fig. 1(b).

The RSJ model is commonly used to model both super-
conductor–insulator–superconductor (SIS) junctions with
externally shunted resistances and superconductor-normal-su-
perconductor (SNS) junctions [1]–[4]. It is not clear if this
model can accurately simulate the latter structures since it
does not include the influence of the frequency-dependent
response of the barrier. In this paper, we show that a fre-
quency-dependent model of the barrier layer must be included
to accurately calculate the dc I–V properties of junctions con-
taining a high-mobility barrier material, while the simpler RSJ
model may be adequate for SNS junctions with a low-mobility
barrier material. First, we describe a formalism to solve the
nonlinear Josephson circuit model equation with a complex
frequency-dependent conductivity. The response is presented,
along with the Fourier components, to provide additional
insight into the details of the junction dynamics. Then, we
focus our calculation on the case when free carriers dominate
the dielectric response of the barrier. The methodology that
we have developed uses an iterative numerical technique to
calculate the I–V characteristics of a Josephson junction with a
barrier exhibiting both dissipation and dispersion. We present
several examples and focus on those with resistivities near the
metal–insulator transition, since it is anticipated that optimized
junctions for applications of the dominant digital family will
have barriers tuned to near this value. We will explain the
basis for this conjecture later in this section. Simulations of
the properties of junctions with two different types of barriers
tuned to near the metal–insulator transition are presented: a
conventional semiconductor with a relatively high mobility
and a strongly scattered defect solid. We use parameters from
Si for the first case. Our intent in the latter case is to simulate
the properties of a Ta N-barrier junction, since this device has
received considerable attention lately [5]. However, since the
relevant material properties of Ta N are not yet well estab-
lished, we use model parameters characteristic of a prototypical
strongly scattered defect solid.

For practical applications, there has been renewed interest in
the fabrication of self-shunted junctions for rapid single flux
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Fig. 1. (a) Calculated I–V characteristics using our methodology for g = 1
and h = n�� (black crosses) are directly compared with those from
McCumber’s paper (solid lines). (b) (I=I ) (where (I=I ) is the
minimum of I=I that is found when it is ramped from values greater than
I ) as a function of � for the case g = 1 and h = n�� . Results of our
theoretical methodology (black diamonds) are directly compared to those from
McCumber’s paper (solid lines). In both cases, agreement is excellent.

quantum (RSFQ) logic to facilitate increased density and re-
duced parasitic inductance over the currently used externally
shunted SIS junctions made by the Nb–AlO trilayer process.
The self-shunted approach uses resistive material as the bar-
rier of the Josephson junction, in the form of an SNS junction

(the “N” barrier is a “normal conductor” and can be a metal,
semimetal, or doped semiconductor). Tunneling is generally not
present in such junctions, supercurrent flows through the normal
barrier by a proximity effect and transport of unpaired carriers
provides the internal shunt resistor. In the case of barriers with
a small free carrier concentration (say 10 cm ) and with a
work function difference between the barrier and the electrodes,
there can exist a potential barrier at the interface that is depleted
(or partially depleted) of carriers, as a result of the formation
of a Schottky contact. If this occurs and extends over a distance
greater than a few atomic layers say 0.5 nm , the barrier will
be inhomogeneous and will form a SINIS-like structure. Also,
since the barrier thickness can be on the order of or smaller than
the average spacing between dopants in a semiconductor, an ad-
ditional complication can arise from the presence of the lateral
potential variations resulting from the discrete dopants. In this
work, we will not address such complicated cases and will focus
on the modeling of junctions assuming a homogeneous barrier.

The traditional view of SNS junctions is that and
are too low to be useful. For example, the high carrier concen-
tration in Cu makes low and depresses as a result of
the reduction in the superconducting pair potential at the su-
perconductor/Cu interfaces [6]. However, is not always
low in SNS junctions. In work performed about 30 years ago,
Van Duzer and his colleagues [7] showed that junctions using a
thin membrane of heavily doped silicon as a barrier had
values that were a significant fraction of the energy gap. Re-
cently, SNS junctions of the type NbN–Ta N–NbN have been
shown to have values in excess of 500 V [5]. The widely
used Nb–AlO –Nb tunnel junctions have intrinsic product
of 2.4 mV [8]. In the current 3- m line width Nb–AlO –Nb
tunnel junction process, external shunting limits the effective

product to only about 250 V [8]. Thus, there are strong
incentives for adapting the NbN–Ta N–NbN junction for the
next generations of RSFQ circuit processes.

To make useful SNS junctions for RSFQ circuits, the elec-
trical resistivity of the barrier needs to be accurately controlled
to a value near the metal–insulator transition for the following
practical reasons. To avoid bit errors caused by noise in 4-K op-
eration, the critical current needs to be at least 100 A.
To attain a voltage pulse of sufficiently short duration with this
logic family, should be 500 V or higher. It is antici-
pated that the next generation of superconducting electronics
will have line widths of 1 m (probably 1.5 m and then
0.8 m). Hence, the junction resistance will have to be a
few ohms (say 5 ). Assuming a material that gives these and

values for a layer thickness of 25–100 nm (as is already the
case for Ta N [5]), then the resistivity implied for this N barrier
material will be 5–20 m cm. These values fall in the range
in which materials undergo the metal–insulator transition. The
use of such a thick barrier also implies that the junction capaci-
tance might be lower than found in the current trilayer process,
depending on the effective dielectric constant of the barrier ma-
terial. This would also improve RSFQ circuit performance as
the product scales with for fixed values of and

. Typically, RSFQ circuit applications require nearly critically
damped (i.e., 1 to 2) junctions.
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II. MODELING METHOD

In our model, we assume uniform current across the junction,
as occurs at zero magnetic field and in structures that have di-
mensions small compared to the Josephson penetration depth

, where is the area of the
junction, is the width, and is the superconducting elec-
trode’s penetration depth. Within these constraints, the electrical
properties of Josephson junctions with barriers exhibiting a fre-
quency-dependent dielectric response are simulated.

Following the approach first described by McCumber [1] and
Stewart [3], the total current through a Josephson junction
can be expressed as the sum of a Cooper pair current and a
normal state current . The time dependence of these param-
eters is implicit and is not included in the notation

Using the Josephson current relation, the Cooper pair current
is given by

where is an input parameter for our model. Values for this pa-
rameter can be obtained experimentally or predicted from theo-
retical work, such as that of Likharev [9], Kupriyanov and Lu-
kichev [18], and/or Devayatov and Kupriyanov [19].

When a junction is dc current biased at a constant value
greater than , the voltage in steady state is periodic and can
therefore be written in a Fourier series with a fundamental
frequency [4]. The resulting voltage can be expressed by
the following Fourier expansion:

(1)

where

It is important to note that in solving the traditional RSJ model,
the junction bias current is the input variable and the voltage is
determined from numerical solution of a nonlinear differential
equation. In order to include the frequency-dependent response
of the barrier, we used the junction voltage as the input param-
eter and solved for the bias current. According to linear response
theory, homogenous barrier materials have complex dielectric
functions, conventionally denoted by , in which the real
component represents conventional dielectric dispersion and the
imaginary component dissipation. The actual overall dielectric
function includes the intraband transitions, free carrier re-
sponse, and interband transitions. The real and imaginary com-
ponents are related by the Kramers–Kronig equations as a result
of causality.

To find the current, the conductance of the barrier can be ex-
pressed using the frequency-dependent complex dielectric func-
tion

We assume a “parallel plate” geometry of electrodes and bar-
rier in our analysis. Since the junction width is small compared
with the electromagnetic wavelength for the frequencies of our
interest, the fields can be considered independent of position in
the junction.

The corresponding relationship between the normal state cur-
rent and voltage can be mapped into an equivalent
linear circuit and can therefore be expressed by the following
Fourier sum:

Using (1), and the fact that
[10], the following expression for the normal state cur-

rent is derived:

Algebraic manipulation allows us to shorten the expression for
the normal state current to

Thus, the total current of a Josephson junction is

(2)

This relationship can be mapped into a nonlinear circuit that
we will solve for an arbitrary using a numerical technique.

First, we perform the same change of variables used in the
RSJ model [1], [4]. Let , , ,
and , where is the Josephson
frequency and is the dc quasi-particle resistance.
Here, and are the normalized current and normalized voltage
for the junction, respectively.
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Notice that

and

(3)

After the change of variables, (2) can be rewritten as

If we set and , then

(4)

In Appendix 1, we have shown that the normalized constant
supply current approaches , allowing us to equate

(5)

Let denote the average of over a full period, that is
. Given the

definition of , (5) is equivalent to
. The latter equality implies the average voltage is directly

proportional to the fundamental frequency of the voltage–cur-
rent oscillation. This is analogous to the ac Josephson effect,
where the dc bias voltage is proportional to the frequency of the
current oscillation. Note that the relationship for average voltage
is not generally true for a nonperiodic time-varying signal. It is,
however, valid in the case of current biased junction circuit in
steady state.

The I–V curve of a junction can then be reduced to the rela-
tionship between the normalized current and normalized av-
erage voltage . With (4) and (5), the task of calcu-
lating the I–V characteristic now entails finding the functional
relationship between and . Appendix 2 describes the itera-
tive algorithm that we use to obtain as a function of and from
that the junction I–V characteristics.

In the above model, the I–V characteristic of the junction is
determined solely by and the coefficients and in (4).
The parameters and depend only on the barrier ma-
terial’s dielectric function and device geometry. Thus, the use
of an accurate dielectric function of the barrier material at the
dominant harmonics of the Josephson frequency is critical to
this model. To avoid the additional complication of selecting ap-
propriate values, in most circumstances we have chosen to use
a model frequency-dependent dielectric response that includes
only the static dielectric response and that from free carriers.
The method we describe here can also be used to simulate junc-
tions using detailed first principles or experimentally derived di-
electric data as we have done for this particular case of the Ta N
barrier.

For conductive barrier junctions, the dielectric function
can be dominated by the contribution from the free carriers
at the harmonics of the Josephson frequency. Under such
circumstances, one can model the response using the following
equation for the frequency-dependent dielectric function [10]:

(6)

where

and

In (6), the low-frequency dielectric constant is used to rep-
resent the response other than from the free carriers. This is a
good approximation when the barrier’s phonons have resonant
frequencies higher than the Josephson frequency and the rele-
vant harmonics. However, it is not clear whether this is a good
approximation for the barrier materials of current interest.

Equation (6) is used to calculate the normal-state barrier con-
ductance. Notice that for

(7)

For
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Fig. 2. (a) Representative calculation of an I–V characteristic of an SNS junction with a 200-nm 18 m
 � cm barrier and a critical current of 2 mA. Corresponding
Fourier coefficients, A and B , for bias current (b) I = 1:0005I and (c) I = 2:118I , which corresponds to an average voltage of 0:1I R and 2I R ,
respectively.

where is equal to the dc resistance of the normal barrier layer.
Furthermore

and

(8)

These values’ results can now be directly used in (4) to obtain
I–V characteristics using the method outlined in Appendix 2.
To calculate I–V characteristics near , the number of
terms in the Fourier expansion quickly exceeds the computing
capacity. Thus, we will not calculate I–V near for the
discussion in this paper. We calculate the I–V curve when
is lowered from high voltages toward zero.

Until now, we have assumed a homogeneous barrier. In prac-
tice, there are other factors resulting from spatially nonuniform
properties that may need to be included to accurately simulate
practical junctions. For example, an interface boundary resis-
tance caused by interfacial carrier or phonon scattering might
be present. Also, semiconductor barriers might contain a region

depleted of carriers and a nonuniform potential as a result of
the formation of a Schottky barrier at the interfaces. Parasitic
capacitances and inductances are often significant. These ef-
fects can be easily built into our generalized conductance model
since series impedances and parallel conductances are additive.
For example, the conductance of a barrier containing an in-
terface boundary resistance or a shunt parasitic capac-
itance is and

, respectively. In many cases, for
determining the critical current, an important input parameter
to our model, complex and/or inhomogeneous geometries may
need to be performed experimentally since it may be difficult to
address theoretically with existing means. In either case, this is
beyond the scope of this paper.

In the following section of this paper, we first give one repre-
sentative set of results that includes both the calculated I–V char-
acteristics and the Fourier coefficients of the junction voltage.
To demonstrate the validity of our calculation scheme, we take
the appropriate limit of (6) that is expected to generate results
identical to that of McCumber’s simpler RSJ model. After that,
we report new theoretical results using the methodology that we
developed for two barrier materials with conductivities near the
metal–insulator transition: a conventional semiconductor with a
relatively high mobility and a strongly scattered defect solid.
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Fig. 3. (a) Scattering rate as a function of mobility, (b) Josephson frequency
as a function of the I R product, and (c) plasma frequency as a function of
carrier density. To calculate the plasma frequency, a carrier mass equal to the
free electron mass and a dielectric constant of 20 was used. Plasma frequency
of any material of interest can be determined by scaling the results in (c) by
(m =m )(20=" ).

III. RESULTS AND DISCUSSION

Fig. 2(a) shows an example of a calculated SNS junction I–V
characteristic for a representative junction with a barrier resis-
tivity near the metal–insulator transition. Fig. 2(b) illustrates the
Fourier coefficients of the junction voltage. At large dc volt-
ages corresponding to when is large (typically and

), the voltage oscillation is sine-like and very few

Fig. 4. (a) Calculated I–V characteristic and (b) Fourier coefficients of junction
voltage at � = 0:1 for Pb–Cu–Pb junction explored experimentally.

terms in the Fourier expansion significantly contribute to the re-
sponse. As the dc voltage, and thus , is reduced in equal steps,
more and more terms are needed, and the reduction in the total
current becomes progressively smaller for each step.

1) Strong Scattering in the Barrier: To verify our calcula-
tion scheme, we set and in order to obtain
the conductance of the RSJ model. Thus,
the RSJ model is mathematically equivalent to our model for
this special case. The resulting I–V characteristics are illustrated
in Fig. 1, and they are expected to be the solution to the RSJ
model with an accuracy of no worse than 10 . In the original
work, McCumber calculated the I–V curves for a circuit with a
frequency-independent parameter for the quasi-particle current
using a numerical integration method that differs from our iter-
ative Fourier expansion scheme. The curves directly taken from
McCumber’s work [1] are compared with our calculation results
in Fig. 1. The agreement is excellent. Only at small normalized
voltages do we find a small difference, which is most likely at-
tributed to integration errors in the earlier work as a result of the
limited computing power available at that time. Since the exact
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Fig. 5. (a) I–V characteristics with parameters chosen to simulate a prototypical strongly scattered defect barrier junction, such as our NbN–Ta N–NbN junctions.
Solid line is calculated from our model. Since in this case � � ! and � � ! , the RSJ model is expected to be a good approximation, and we find this to be
a valid conclusion when we compare our results (solid line) and the RSJ model with � = 0:077 (crosses, ). (b) Simulated NbN–Ta N–NbN junction with the
same parameter used for Fig. 5(a) except increased " to 100. No noticeable change in I–V. (c) Simulated Ta N junction that shows hysteretic behavior. In this
figure, we compare our results (solid line) and the RSJ model with � = 2:0 (crosses, ) and find good agreement as well. (d) Simulated I–V characteristics of
NbN–Ta N–NbN junctions with measured dielectric function of Ta N (shown in the insert of the plot).

details of the calculation and corresponding accuracy are not
documented in McCumber’s paper [1], it is not possible for us
to make a more accurate comparison. However, the comparison
presented above does show that our iterative scheme and Mc-
Cumber’s integration scheme both yielded essentially the same
solution.

In general, the RSJ model is valid when the time between
quasi-particle scattering events in the barrier is signifi-
cantly shorter than both the period of voltage oscillation across
the junction and the period of the barrier material’s
plasma frequency . In this case, the electrodynamic re-
sponse of the quasi-particles in the barrier is resistive in nature
and

where , . Thus,
the quasi-particle current is in-phase with the voltage,
the impedance of the junction is dissipative and equal to

, and the junction can therefore accurately be sim-
ulated by the RSJ model with .

If we consider the case with more carriers in the barrier, the
magnitude of can become on the same order or smaller than

. With strong scattering , and (8) predicts that in this
limit and are

and

where . To distinguish
from in the RSJ circuit model, which is defined in terms
of circuit elements, we introduce , which is defined from
barrier material properties. Similar to the role of , deter-
mines the extent of hysteresis in the strong scattering limit. In
this case, the relationship between and is given
by Fig. 1(b) with instead of on the vertical axis.
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To assist the reader in comparing the different limits, we have
plotted in Fig. 3 the scattering rate as a function of mobility, the
Josephson frequency as a function of the product, and
the plasma frequency as a function of carrier density. To cal-
culate the plasma frequency, we assume that the carrier mass
and the static dielectric constant, , are equal to the free elec-
tron mass and 20, respectively. These results can be scaled by

to determine the plasma frequency for any
material of interest.

We next model junctions with conventional metal barriers.
Fig. 4 illustrates the simulation of Pb–Cu–Pb junctions which
have been explored experimentally in [6]. In this case,
and . This results in all of the being very close to 1
and the being small and negative as
a result of and . The RSJ
model predicts is essentially equal to 0. Our model predicts
essentially identical I–V characteristics and Fourier coefficients
for the junction voltages to those predicted by the RSJ model,
as indicated in Fig. 4.

Our last simulation of a junction with a barrier in the strongly
scattered limit uses device parameters (i.e., dimensions, , and

) from optimized nonhysteretic junctions with a Ta N bar-
rier tuned near the metal–insulator transition, as reported in [5]
and [11]. For simplicity, we use a constant dielectric constant

of 20 as this value is obtained for optical measurements in
the visible range. This approximation will be examined in the
next paragraph. For this system, the carriers are very strongly
scattered in the barrier [12] and and . There-
fore, the RSJ model is expected to be consistent with our model.
One junction described by [5] has of 2.5 mA, of 0.3 ,
and of 0.75 mV. Using these junction parameters, we cal-
culated a for the RSJ model.
Furthermore, we found close to 1 and close to

for our model, consistent with the analysis for the
limiting case discussed in the previous section. Fig. 5(a) shows
that the calculation based on our model appears to be identical
with the RSJ model of . Note that there are signif-
icant discrepancies between the experiment and the predictions
of the two models. This cannot be reconciled by using a dielec-
tric constant as high as 100 [Fig. 5(b)]. This will be discussed
further in the next paragraph. We also show that the shape of
the I–V curve is relatively insensitive to compensating changes
in carrier concentration and mobility when the resistivity and
other parameters are fixed, as illustrated in Fig. 6. For this junc-
tion system, we have also modeled other I–V characteristics with
more hysteresis [Fig. 5(c)] [11] and find that the result is con-
sistent with the RSJ model of 2. The agreement between
our model and the RSJ model in these cases showed that the dy-
namic response of the free carriers has almost no effect on the
I–V characteristics in the strongly scattered limit.

In [5] and [11], the measured I–V curves in Ta N junctions
show “excess current,” extrapolation of the high-voltage part of
the I–V characteristic to the zero-voltage axis intersects at a pos-
itive current. This type of behavior is predicted by neither the
RSJ model nor our calculations based on a frequency-indepen-
dent dielectric constant [e.g., Fig. 5(a) and (c)]. We have inferred
the frequency-dependent dielectric constant of Ta N films from

Fig. 6. Calculated I–V characteristics with parameters similar to those in
Fig. 5, except the mobility is increased and carrier density decreased while
keeping all other parameters including resistivity, device dimensions, and the
critical current unchanged. First few orders of magnitude change in mobility
and carrier density have almost no effect on the shape of the I–V curve. I–V
curve is essentially the � = 0:077 curve for the RSJ model (see Fig. 5).
However, in the case of very high mobility, the RSJ model is not expected to be
valid and our model’s calculation of the I–V characteristics predicts currents
significantly above the RSJ � = 0:077 curve.

preliminary optical measurements1 [insert in Fig. 5(d)]. The use
of this dielectric function along with other parameters for Ta N
in our model results in an I–V curve [Fig. 5(d)] which shows
excess current and is similar in shape to the I–V characteristics
illustrated in [5] and [11]. The excess current-like feature in the
I–V is a direct consequence of the drastic change in dielectric
function near 3 meV. There still are differences between the later
calculation and experiment data, such as the amount of hyster-
isis. Nevertheless, this example shows that various dispersion
and dissipation mechanisms can be incorporated in our models
of the I–V characteristics. Thus, our model can provide insight
to the operation of a variety of Josephson junctions.

2) Weak Scattering in the Barrier: For many barrier mate-
rials with relatively high mobility, the criterion that is much
larger than both and is not satisfied. For such cases,
the dependence of on becomes more complicated and
we expect the shape of the I–V characteristics to deviate from
those that can be predicted by the RSJ model. This result is be-
cause the conductance of the barrier material also contains an
out-of-phase component, which is a result of the inertia of the
carriers causing a time lag in their response in a time-varying
field and is most significant for materials with reduced carrier
scattering and, thus, higher mobility. The free carriers’ dynamic
response is typically modeled with a resistor representing the
in-phase scattering loss and an inductor for the out-of-phase
dispersive response. The inductive term results from the inertia

1The conductivity of Ta N films can be varied over a wide range by adjusting
the stoichiometry. To measure the dielectric response of the Ta N lattice, the
properties of a nonconductive Ta N film was measured. A Brucker Model IFS
86 W/S spectrometer was used in the range of photon energies between 3.5 and
25 meV and a Woolam Co ellipsometer Model IR-VASE was used for photon
energies between 30 and 650 meV. The dc dielectric constant was determined
from a 1-MHz capacitance measurement of a Nb–Ta N–Nb parallel plate struc-
ture. These results in combination with the model of the free carrier dielectric
constant (6) were used to infer the dielectric response of the Ta N.
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Fig. 7. Calculation of I–V characteristics of a junction comprising Nb electrodes and a relatively high-mobility barrier with resistivities of � 60 m
 � cm and
6 
 � cm. Barrier’s dielectric parameters are those of Si and are listed in Tables I and II: (a) � = 6:2 
 � cm, I R = 0:13 mV and (b) � = 62 m
 � cm,
I R = 0:56 mV.

of the free carriers. For this high mobility case, the average car-
rier is not scattered in a period of oscillation of the field, and
therefore the charge density and resulting polarization lags the
electric field by 90 . This results in the electrical circuit equiv-
alent of an inductive response, even though the resulting stored
energy arises from an electric field. We will show that the free
carriers’ dynamic response causes the electrical properties of
these junctions to differ from the predictions of the RSJ model.

To illustrate the influence of this effect we simulate a set of
Nb–Si–Nb junctions with various carrier densities and mobil-
ities for the barrier. Si was selected to be the barrier material
since it is the most common semiconductor, can be formed with
a very large range of mobility and carrier density, and can be
easily tuned through the metal–insulator transition. In practice,
depending on the method of preparation, a Schottky barrier can
form at the Nb–Si interfaces [13]. To simplify our analysis,
we shall ignore the potential Schottky barrier, assuming ohmic
contacts. This situation can be realized in practice by using
delta-doped layer at the Nb–Si interface. We are going to
compare the junctions having the same and product,
since such junctions have the same McCumber number

,
hence identical I–V characteristics are predicted by the RSJ
model. Thus, the differences that are observed can be attributed
to the dynamic response of free carriers in the barrier.

We next compare the predictions of our model with the RSJ
model for junctions with barriers that have a wide range of mo-
bilities. In order to illustrate the difference, we adjust the barrier
properties so that the two key parameters of the RSJ model,
and , are kept constant. For these cases, the RSJ model pre-
dicts identical I–V curves and we again show that our model
differs significantly for the high mobility case.

In order to perform the calculations, we first need to select
relevant values for the critical current, an input parameter in
both our model and the RSJ model. We choose the simplest
available formulation to illustrate this point. For junctions in the
dirty limit , we use Likharev’s analytical SNS model
[4], [9], [18], [19] to predict the

valid for

where is the normal metal coherence
in the dirty limit, and 2 is the diffusivity. Within Likharev’s
model, is fixed when , the ratio between barrier

2For materials with a thermal velocity larger than Fermi velocity (i.e.,
N < 10 =cm ), the nondegenerate Einstein relationship expression
D = (k T=e)� is used to infer the diffusivity. For higher carrier concentra-
tions, the degenerate expression D = (1=3)v l is used.
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TABLE I
JUNCTION PARAMETERS USED FOR FIG.7(a)

thickness and , is constant. For junctions in the clean limit
, the junction is predicted to vary as

where [14] for degenerate semiconductor
barriers and for
nondegenerate semiconductors. In the latter case, does not
directly depend on mobility or carrier concentration.

The modeling of junctions with dc barrier resistivities of
62 m cm and 6.2 cm is presented in Fig. 7. To obtain

the curves in Fig. 7, we began by selecting a resistivity and a
mobility in the dirty limit and a barrier thickness that is several
times the so that Likharev’s analytical SNS model is valid.
We then increase the barrier mobility and decrease the carrier
concentration while keeping constant. At a sufficiently
high mobility, when the material is in the clean limit, we vary

to continue to maintain the same . In the highest
mobility cases, the mean-free path becomes longer than the
barrier thickness and significant levels of ballistic quasi-particle
current can flow through the barrier. In practice, such a junction
has been realized using high-mobility semiconductor barriers,
such as InAs [16].

As can be seen in Fig. 7, the result for junctions with high mo-
bility barriers differ both qualitatively and quantitatively from
the predictions of the RSJ model. Fig. 7 shows that there can
be “bumps” at several nonzero voltages. For the purpose of
our discussion, we refer to these voltages as critical regions.

These features are associated with the occurrence of the bar-
rier’s plasma frequency near the characteristic frequency of the
junction. For the range of barrier resistivities being investigated
here (i.e., near the metal–insulator transition), this occurs only
in the high-mobility materials. Several critical regions are illus-
trated in detail in Fig. 8. If is large in the critical region, the
anomaly can be hysteretic [Fig. 8(a)].

Quantitative analysis indicates that the critical regions occur
when one of the is zero, i.e.,

This condition occurs when the plasma frequency and scat-
tering rate couple in such a way that the real part of the dielectric
constant of the system is zero for a specific frequency compo-
nent of the response (i.e., a given index, ). This follows since

, , and the real part of the dielectric constant, i.e., the first
term in (6), are all zero. The applied voltage , at which this
occurs, is equal to , where is the barrier’s
plasma frequency, is an integer, is the scattering rate, and
is the reduced Planck constant.

Studies in the literature report semiconductor and semimetal
barrier junction I–V characteristics with anomalies below the
energy gap that resemble these critical regions and whose
physical mechanism has not previously been identified. For
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TABLE I
JUNCTION PARAMETERS USED FOR FIG. 7(b)

example, Fig. 9 shows possible evidence for critical regions in
the I–V curve of Si single-crystal membrane barrier junction
near 0.42 and 0.21 mV reported by Huang and Van Duzer [6].
Other studies have also observed similar features, as in the case
of [16, Fig. 3(b)]. In that study, the measured indicates that
the barrier is partially depleted, therefore we are not able to
confidently estimate the carrier concentration within the barrier
and therefore cannot unequivocally attribute this anomaly to
the barrier’s plasma frequency.

The critical features may be distinguished from other subgap
features by their energy and temperature dependences. The sub-
harmonic gap feature associated with the electrode’s gap falls
at voltages equal to (where is an integer) and will
have the characteristic temperature dependence of the energy
gap [16], [17]. In contrast, the critical region’s voltage depends
on , , and . If the barrier falls on the insulator side of the
MI transition, will drop dramatically as carrier freeze-out oc-
curs at low temperature. If the barrier falls on the metallic side,
the critical region’s voltage would not generally coincide with
the gap features and the temperature dependence would be rel-
atively constant since and are both expected to have weak
temperature dependence. The former will typically be domi-
nated by impurity scattering , and the latter depends pri-
marily on the carrier density.

The dielectric function model given by (6) is a special case of
the Lorentz oscillator model for the dielectric function [10] with
a single oscillator centered at zero frequency. There are many

other processes in solids, for examples excitation from defects
or phonons, that are modeled with oscillators at nonzero fre-
quencies. Consider the simplest case where a single oscillator
is centered at . The dielectric function takes on the fol-
lowing form:

where is the oscillator width and corresponds to the oscil-
lator strength. In this case

Thus, we expect the critical region to occur at
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(a)

(b)

Fig. 8. In some cases, I–V curves with critical regions are observed, as shown here. (a) Hysteretic behavior can be seen in each of these regions. (b) I–V
characteristics and Fourier coefficients at voltages focus in on the upper critical region of (a). Parameters are listed in Table III.
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TABLE III
JUNCTION PARAMETERS USED FOR FIG. and 8(a)

Fig. 9. I–V characteristic of a junction with a single-crystal Si membrane
barrier. Regions that possibly could be associated with critical regions are
observed at 0.42 and 0.21 mV.

when is small and is the dominant frequency. The expres-
sion can be simplified as

Quasi-particle transport by tunneling and/or Andreev reflection
is enhanced at a voltage corresponding to the superconducting
energy gap . This can be incorporated into the model using
oscillators centered at in the dielectric function. In this
case, our simulated I–V will yield subgap harmonic structures as
in [16] and [17].

IV. CONCLUSION

We have extended the (RSJ) circuit model to incorporate a
frequency-dependent dielectric response so that mechanisms

of dissipation and dispersion in the barriers can be taken into
account. Since the method we developed can solve the non-
linear junction equations for a barrier with an arbitrary complex
conductivity, it is also capable of including other relevant pro-
cesses within the barrier, including the influence of excitation
from shallow defects or very soft phonon modes, as well as
boundary resistances. We have shown that the incorporation of
the response of free carriers in SNS junctions significantly in-
fluences the dc I–V characteristics for the case of material near
the metal–insulator transition with high mobility. Hysteretic
anomalies occur at nonzero voltages in the I–V characteristics
associated with the barrier layer’s plasma frequency. The re-
sulting features, which we call critical regions, occur when the
dc junction voltage is equal to , where

is the barrier’s plasma frequency, is the quasi-particle
scattering rate, is an integer, and is the reduced Planck’s
constant. We also show that our results for SNS junctions with
a low-mobility barrier material are essentially identical to the
predictions of the simpler RSJ model.

APPENDIX I
PROOF OF THE RELATIONSHIP BETWEEN AVERAGE JUNCTION

VOLTAGE AND FUNDAMENTAL FREQUENCY OF JUNCTION

VOLTAGE OSCILLATION

In this appendix, we explicitly show that the constant ,
which sets a lower bound for the average normalized current
, is equal to .

Using the definition of normalized voltage in (3), the time
average can be expressed as

(A1-1)

For a Josephson junction, every period of voltage oscillation
corresponds to a change of in the gauge-invariant phase, that
is

(A1-2)

Combine (A1-1) and (A1-2), and can be further expressed
as

(A1-3)

The above equation is true as long as voltage oscillation is
periodic, regardless of its shape.

Also, since ,
we have . Thus, we obtained following expression be-
tween the normalized average voltage and normalized fun-
damental frequency

(A1-4)
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APPENDIX II
ITERATIVE ALGORITHM FOR DETERMINING THE I–V

CHARACTERISTIC

The following numerical algorithm is used to calculate the
junction I–V characteristics.

Step 1) Set initial upper bound for .
Step 2) Set up the initial conditions. First, guess the Fourier

expansion coefficients and for .
Since the voltage oscillations are sinusoidal at high
values of , a sine wave (i.e., with the re-
main coefficients set to zeros) is used as the initial
guess. This is an efficient method to achieve con-
vergence. Then, calculate and for this par-
ticular value of using their definitions.

Step 3) Calculate the expansion for . According to (3), the
expansion for is determined by and previously
guessed values of and . Without losing
generality, one can choose to be zero.

Step 4) Calculate .
Step 5) Use numerical integration to find Fourier coeffi-

cients for

According to (4)

Then, solve to get new and from

Step 6) Perform a weighted average with the new calculated
coefficients and the values from the last iteration.

Step 7) Check the convergence condition for . If not satis-
fied, go to Step 2). If satisfied, record and .

Step 8) Reduce value for , and go to Step 2). Iteration will
continue until is calculated for all the desired the
values of .

The above outlined method is effective when calculating I–V
as average voltage reduces; we can trivially extend the scheme
to the case when average voltage increases. However, in prac-
tice, as the average voltage approaches zero, the junction voltage
is sharply peaked, and the number of Fourier terms required
increases quickly to exceed the limit of computation capacity.
Thus, when investigating the hysteresis at zero voltage, only the
“return” part of the I–V can be obtained from this calculation.
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