A Distributed TES Model for Designing Low Noise Bolometers Approaching SAFARI Instrument Requirements

P. Khosropanah1*, R.A. Hijmering1, M. Ridder1, M.A. Lindeman1, L. Gottardi1, M. Bruijn1, J. van der Kuur1, P.A.J. de Korte1, J.R. Gao2, H. Hoevers1

1SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
2Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Abstract - Transition edge sensors (TES) are the chosen detector technology for the SAFARI imaging spectrometer on the SPICA telescope. The TES are required to have an NEP of 2-3\times10^{-19} W/\sqrt{Hz} to take full advantage of the cooled mirror. SRON has developed TiAu TES bolometers for the short wavelength band (30-60 \textmu m). The TES are on SiN membranes, in which long and narrow legs act as thermal links between the TES and the bath. We present a distributed model that accounts for the heat conductance and the heat capacity in the long legs that provides a guideline for designing low noise detectors. We report our latest results that include a measured dark NEP of 4.2\times10^{-19} W/\sqrt{Hz} and a saturation power of about 10 fW.

PACS numbers: 85.25.Pb, 95.85.Gn

Submitted to ESNF July 28, 2011; accepted October 06, 2011. Reference ST274, Category 4
Published in Journal of Low Temperature Physics 167, Numbers 3-4, 188-194 (2012)