Ca-repaired BaZrO₃ Nanorods/YBa₂Cu₃O_{7-x} Interface for Enhanced Pinning in YBa₂Cu₃O_{7-x} Nanocomposites with 2-8% BaZrO₃ Doping

<u>Judy Wu</u>¹, Mohan Panth¹, Victor Ogunjimi¹, Mary Ann Sebastian², Di Zhang³, Bibek Gautam¹, Jijie Huan³, Yifan Zhang³, Timothy Haugan², and HaiyanWang³

¹Department of Physics and Astronomy, University of Kansas, KS, USA ²U.S. Air Force Research Laboratory, Propulsion Directorate, WPAFB, OH, USA ³School of Materials Engineering, Purdue University, IN, USA

E-mail: jwu@ku.edu

Abstract—C-axis aligned BaZrO₃ (BZO) nanorods formed via strain-mediated self-assembly in BZO- doped YaBa₂Cu₃O_{7-x} (BZO/YBCO) nanocomposite films can provide strong pinning to the quantized magnetic vortices. While the strain initiated from the BZO/YBCO lattice mismatch plays a critical role in nucleation and evolution of the BZO nanorods, it also leads to a highly defective BZO/YBCO interface and hence reduced pinning efficiency of BZO nanorods. This work reports a recent study in probing the effect of BZO/YBCO interface on the pinning efficiency of the BZO nanorods as the interface is repaired dynamically during the BZO nanorod growth using Ca doping. Within the BZO doping range of 2-8 vol.%, significantly enhanced pinning efficiency of the BZO nanorods have been observed. A peak enhancement up to five-fold of critical current density at 9.0 T and 65-77 K has been obtained in the 6 vol.% BZO/YBCO nanocomposites after the interface repair. This result not only illustrates the critical importance of the BZO/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO nanorods.

Keywords (Index Terms)—YBCO nanocomposite film, artificial pinning center, vortex pinning efficiency, coherent interface, dynamic lattice enlargement

Acknowledgements

This research was supported in part by NSF contracts Nos: NSF-DMR-1909292, the AFRL Aerospace Systems Directorate, the Air Force Office of Scientific Research (AFOSR), and the U.S. National Science Foundation DMR-2016453 for TEM characterization.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October, 2023. Invited presentation given at CEC-ICMC, July 9–13, 2023, Honolulu, Hawaii, USA