Recent Progress on Neuromorphic Computing Using Adiabatic Josephson Devices

Olivia Chen, Tomoharu Yamauchi, Zhengang Li, Yanzhi Wang and Nobuyuki Yoshikawa
Tokyo City University, Japan

E-mail: oliviac@tcu.ac.jp

Abstract — Adiabatic Quantum-Flux-Parametron (AQFP) logic has demonstrated the potential to build highly energy-efficient computing systems, thanks to the adiabatic switching of Josephson junctions. In this paper, we present our latest progress on developing AQFP-based neuromorphic computing systems, including a binarized neural network architecture, a stochastic number-based computing paradigm, and a hardware-software co-optimization framework. We have also fabricated a prototype neural neuromorphic processor with AIST 10kA/cm² high-speed standard process, consisting of 2236 Josephson junctions. The target operating frequency is 5 GHz, and the energy dissipation is 11.18 aJ without the cooling cost. Compared to a representative CMOS-based BNN framework, our design can achieve about 7.8 × 10⁴ times higher energy efficiency with a similar model accuracy level on the CIFAR-10 dataset.

Keywords (Index Terms) — AQFP, bnn, neuromorphic computing