On-Chip Digital Readout of a Superconducting Qubit Using a Josephson Digital Phase Detector

Luigi Di Palma¹, Laura Di Marino^{1,2}, Federico Vittorio Lupo^{1,3} Amir Salim⁴, Louis Fry-Bouriaux⁵; Oleg Mukhanov⁴; and Marco Arzeo¹

> ¹SEEQC-EU, Italy ²University of Naples Federico II, Italy ³Università Degli Studi di Palermo, Italy ⁴SEEQC -US, USA ⁵SEEQC-UK, Italy

> > E-mail: lpalma@seeqc.com

Abstract—Recent demonstrations of quantum error correction fuel attempts to realize faulttolerant superconducting quantum computers capable of practical applications. Despite the remarkable progress, achieving fast and high-fidelity single-shot readout of the qubits states remains a challenge to reliably cross the threshold of efficient error correction. Existing experimental schemes to readout the state of a superconducting qubit necessitate microwave components both at room and cryogenic temperatures, providing significant technological and economic barriers to system scalability. Therefore, it is highly desirable to implement a fast and high-fidelity readout scheme directly inside the fridge to reduce the overall system footprint and allow for low-latency operations. Here, we propose an approach to accomplish high-fidelity diabatic cryogenic readout of superconducting qubits based on the Josephson Digital Phase Detector (JDPD). When properly excited by an external flux, the JDPD can quickly switch from a single-minima to a double-minima potential and, consequently, relax in one of the two stable configurations discriminating between two phase values of a coherent input tone at GHz frequencies. We experimentally verified the possibility for the JDPD to sense the phase response of a tunable resonator with a 100 ns duration protocol and 99% fidelity. We are already working on an improved design which includes a dedicated SFQ (Single Flux Quantum) architecture. The expected performance of the new device meets the requirements of efficient error correction techniques.

Keywords (Index Terms)— Superconducting quantum circuits, Josephson detector, Superconducting devices–superconducting microwave devices

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.