HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program

<u>Paolo Ferracin</u>³, Giorgio Ambrosio^{1,2}, Kathleen Amm², Michael Anerella², Douglas Araujo⁴, Diego Arbelaez³, Maria Baldini¹, Lucas Brouwer³, Marika D'Addazio³, Emanuela Barzi¹, Lance Cooley⁵, John Cozzolino², Laura Garcia Fajardo³, Stephen Gourlay¹, Ramesh Gupta², Mariusz Juchno³, Vadim Kashikhin¹, David Larbalestier⁵, Vittorio Marinozzi¹, Igor Novitski¹, Soren Prestemon³, Emmanuele Ravaioli⁶, Etienne Rochepault⁷, Jose Luis Rudeiros Fernandez¹, Tengming Shen³, Reed Teyber³, Giorgio Vallone³, George Velev¹, Ben Yahia², Alexander Zlobin¹, Xiaorong Wang³

¹FNAL, Batavia, Illinois, USA
²BNL, Brookhaven, New York, USA
³LBNL, Berkeley, California, USA
⁴PSI, Villigen, Switzerland
⁵NHMFL, Tallahassee, Florida, USA
⁶CERN, Geneva, Switzerland
⁷CEA, Paris-Saclay, France

E-mail: pferracin@lbl.gov

Abstract—The next generation of High Energy Physics particle accelerators is expected to require superconducting dipole magnets with very high magnetic field. For some of the different scenarios under study, arc magnets capable of generating up to 20 T in the bore are considered to maximize the energy of colliding beams. This magnetic field level goes beyond the limits of the traditional superconducting materials used in accelerator magnets, namely the Low Temperature Superconductors Nb-Ti and Nb₃Sn, and requires the use of so-called High Temperature Superconductors, like REBCO and Bi2212. The US Magnet Development Program (MDP) is currently designing and fabricating superconducting dipole magnets in hybrid configuration, i.e. characterized by HTS coil inserts surrounded by Nb₃Sn ouserts, with the ultimate goals of reaching a bore field of 20 T. In this paper we discussed the challenges of hybrid magnets in terms of magnetic design, mechanical integration, and quench protection, and we summarize the recent activities carried by the MPD collaboration aimed at the construction of HTS inserts and LTS outserts, first tested in stand-alone configuration, and then assembled and powered in hybrid configuration. In addition, the conceptual study of a future 20 T hybrid magnets is presented, and different possible lay-outs are analyzed.

Keywords (Index Terms)—Superconducting magnets, dipole magnets, Nb3Sn magnets, HTS magnets, hybrid magnets

This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, through the US Magnet Development Program.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.