

ACASC-Asian ICMC 2023

Shanghai, China 29 October-1 November 2023

High field superconducting magnet development with HTS

<u>Satoshi Awaji</u> K. Takahashi, A. Badel^{*}, A. Zampa T. Okada, Y. Tsuchiya

High Field Laboratory for Superconducting Materials (HFLSM), Institute for Materials Research, Tohoku University *present address is Neel Institute / G2Elab

Collaborators

Toshiba Energy System & Solutions Corporation <u>тоноки</u> UNIVERSITY H. Takewa, T. Uto, S. Hanai, H. Nezuka, <u>S. Ioka, J. Inagaki, T. Tosaka</u> Furukawa Electric Co. Ltd. M. Sugimoto, R. Taniguchi, K. Hirose, H. Tsubouchi Fujikura Ltd S Fujita, S. Muto, Y. Iijima, M. Daibo NIMS G. Nishijima Sanyo-Onoda City Univ. K. Kajikawa

Contents

- 1. High field HTS magnet developments in the world
- 2. Cryogen-free magnet developments at HFLSM
 - Lessons learned from failures of REBCO coils behind successes
- 3. Robust REBCO coil concept
 - Two bundle winding REBCO coil with a local damage
 - Large-scale REBCO R&D coil
- 4. 33T cryogen-free superconducting magnet development
- 5. Summary

æ	Cha	llen	ges o	fΗ	igh	field	d H.	TS	mag	nets	in the wo	rlc	(>2() T)
HFLSM		Duran a da	B(T)	UTC	Jcon	Max Stress		T (1/)	M/in dia a	T	Chatura	Magaz		Operation
Iname	Group	Purpose	(HTS/LTS)	HIS	(A/mm^2)	(MPa)	10 (mm)	1 op (K)	winding	Impregnation	Status	year	Insulation	days
32T	IEE/CAS	User magnet	32.35 (17.35/15)	RE123	378	610	35	4.2 (LHe)	DP	Wax	NI	2019	NI	
32T-5M	NHMFL	User magnet	32 (17/15)	RE123	193	378	40	4.2 (LHe)	DP	Dry	Open since 2021	2017	Insulated	
1.2GHz- NMR	Bruker	NMR	28.2	RE123				2.2? (LHe)			Persistent, stability <10 ppb, Commercial	2019	Insulated	
25T-CSM	Tohoku U.	User magnet	25.1 (11.1/14)	Bi2223	150	323	96	4-8	DP	Epoxy/ turn separation	Open since 2016	2016	Insulated	1100
20T-CSM	Tohoku U.	User magnet	20.1 (4.45/15.6)	Bi2223	118	212	90	4-6	DP	Epoxy/ turn separation	Open since 2013	2013	Insulated	1988
1020MHz- NMR	NIMS /RIKEN	NMR	24.2 (3.62/20.4)	Bi2223	150	194	78	1.8 (LHe)	Layer	Wax	Obtained NMR signal, Closed in 2017	2016	Insulated	
MIRAI	RIKEN	NMR magnet	23.8 (12.6/11.2)	Bi2223	225	291	78	4.2 (LHe)	Layer	Wax	1.01 <i>G</i> Hz	2019	Insulated	
24T R&D	NIMS /RIKEN	Demo	24 (6.8/17.2)	RE123	428	408	50	4.2 (LHe)	Layer	Wax		2012	Insulated	
25T R&D NMR	U. Geneva	Demo	25 (4/21)	RE123	733	139	20	2.2	Layer	Ероху		2019		

4.2(LHe)

4.2 (LHe)

4.2 (LHe)

4.2 (LHe)

4-8

4.2 (LHe)

4.2 (LHe) NI-DP

DP

SP

Layer

NI

SP

NI-SP

Dry

Dry

Wax

Epoxy/turn

separation

Epoxy/turn

separation

Dry?

Wax

50

14

40

91

104

35

36

NOUGAT LNCMI/CEA

LBC

28T Demo

30.5T

25T-CSM

25T NI

25T

-Saclay

NHMFL

RIKEN

MIT

Tohoku U.

SuNAM

/MIT

IEE/CAS

Practical use

32..5

(14.5/18(RM))

45.5

(14.4/31.1(RM)) 27.7

(6.3/4.3/17.1)

30.5

(18.8/11.7)

24

(10/14)

26.4

25.7

(10.7/15)

Demo

Demo

Demo

NMR

User

maanet

Demo

Demo

RE123

RE123

RE123

/Bi2223

RE123

RE123

RE123

Demonstration

717

1420

396/238

547

221

404

RE123 100-306

716

691

407

286

382

Damaged

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

32.5T under 18T by

resistive magnet

Damaged at 45.5T

Quench and damaged at

27.7T

NI, HTS coils damaged in

test

Quench and damaged at

24T

NI

NI, Quench at 25.7T

MI

NI

Insulated

NI

Insulated

NI

NI

2019

2017

2016

2018

2015

2016

2017

May have left out. Apologize if so.

Practical high field superconducting magnets

25.1 T (Bi2223) Cryogen-free

25.1T- 52 mm RT (HFLSM) LTS: 300 mm -14 T HTS: 96 mm-11.1 T (Bi2223) S. Awaji SuST , 30 (2017) 065001 K. Takahashi et al, under review

28.19 T (REBCO) LHe, Persistent

1.2 GHz-NMR Comercial (Bruker) 28.19 T - 54 mm RT https://www.bruker.com/ 32 T (REBCO)LHe

32T-32mm LT (NHMFL) LTS: 250 mm -15 T HTS: 32 mm-17 T (REBCO) H. Weijer, IEEE TAS. 24 (2014) 4301805

Steady High Magnetic Field Facilities in the world

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

We have many failures of REBCO coils behind these successes.

Cryogen-free magnet developments at HFLSM, Sendai, Japan

28T-CHM (\operatorname{360-9T-CSM}

- CuNbTi/Nb₃Sn strand
 \$\$\overline{432-19T-WM (8MW)\$}
- Double Bitter

20T-CSM(052RT)

- ¢196-15.57T-LTS
- Cu-alloy/Ag/Bi2223 (SEI HT-CA): 212 MPa

25T-CSM(052RT)

- ∲300-14T-LTS
- + CuNb/Nb₃Sn Rutherford, NbTi: 251 MPa $_{\varphi}96\text{--}11T\text{--}HTS$
- Ni-alloy/Ag/Bi2223 (SEI HT-Nx): 323 MPa

- \$320-14T-LTS
- CuNb/Nb₃Sn Rutherford, NbTi:267 MPa ϕ 96-11T-HTS
- REBCO (Robust coil concept)

Failures

- 50 REBCO Pancakes for upgrading to 22 T
- (Insulation & Impregnation)
- ϕ 96mm x ϕ 177mm, J = 217 A/mm², σ = 297 MPa
- Degradation in the outer windings after cooling down due to axial thermal shrink in large-scale coil.

56 REBCO Pancakes (Insulation & Impregnation)

- ϕ 104mm x ϕ 262mm, J= 130 A/mm2, σ = 407 MPa
- Quenched at 24 T due to a local degradation and damaged.

HFLSM

25T Cryogen-free <u>Superconducting Magnet</u> (25T-CSM)

Insulated mono-tape winding Magnets (HTS-Bi2223): 10.6T@188A 38 Ni-alloy/Bi2223 double pancakes \$\$\overline{96mm x \$\$\overline{280 mm x \$\$h390 mm \$\$Max. hoop stress 323 MPa}\$

Magnet (HTS-RE123): 10.5T@131A 56 GdBCO single pancakes \$\$\operatorname{104mm x \$\$\operatorname{263 mm x \$\$\$hard \$\$ hard \$\$ mm \$\$ max. hoop stress \$\$\$366MPa\$

Magnets (LTS): 14T@854A

3 CuNb/Nb3Sn Rutherford solenoids φ300 mm x φ539 mm x h628 mm Max. hoop stress 251MPa

3 NbTi Rutherford solenoids ϕ 545 mm x ϕ 712 mm x h628 mm Max. hoop stress 138 MPa

Cooling system

Conduction cooling using He circulation Shield: 2 x 1 stg GM cryocooler HTS: 2 x 4K-GM cryocooler (3W@4.2K, 10W@8K) LTS: 2 x GM/JT cryocooler (8.6W@4.3K)

Awaji et al., SuST. 30 (2017) 065001

Performance of 25 T-CSM

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

// property of REBCO coil for 25T-CSM

- REBCO insert achieved 10 T with 125 A in the stand-alone test but deteriorated from an initial state in the background field of 14 T.
- Broad *IV* properties (small *n*-value) was observed under 14 T.

Degradation Gd123 insert of 25T-CSM after quench

Initiation of quench from PC#3-5

- Quench was initiated from the pancakes #3-5 by the observations of damage.
- Many pancakes were deteriorated seriously because of arc discharge.

->The risk of local degradation should be taken into account in design at the moment.

Quench behavior of 25T-CSM with REBCO

The quench protection looks well at least for 6 s after the quench?

Simulation results of the quench

A. Badel et al, IEEE TAS

Lessens learned from failures of REBCO high field coils ¹⁶ (insulated and impregnated coils)

- ✓ A risk of local degradation should be taken into account in design at the moment.
 - Two tape co-winding for current shearing in order to mitigate and reduce hotspot temperature
- ✓ Broad *IV* property in case of a local degradation and not too short time to burn-out after thermal runaway
 → Protection is possible if we set adequate threshold in balance voltage.
- ✓ Protection for the hot-spot related to local degradation and inhomogeneity is crucial.
 - → Early detection of thermal runaway is one of solution

Concept of Robust REBCO coil

S. Awaji IEEE TAS 31 (2021) 4300105

Robust against local degradation:

Two bundle insulated double pancake coil with a damaged area

EuBCO tape	with BHO
Width	4 mm
full thickness	0.11 mm
REBCO thickness	2.5 <i>μ</i> m
Hastelloy® thickness	50 <i>µ</i> m
Cu thickness	20 <i>µ</i> m
<i>I</i> _c (4mm, 77 K, s.f.)	213.5 A

Double pancake coil

tape	EuBCO+BHO
Turn number	101 turn×2 layer
Inner diameter	40.0 mm
Outer diameter	94.0 mm
Position of damage*	55 turn of bottom coil, outer tape
Coil constant	3.87×10 ⁻³ T/A

*Damage was introduced by double bending with ϕ 12 mm bending dia.

ϕ 40 × ϕ 94, 101 × 2 turns/pc

Damaged part I in 55th/101 turn of bottom PC

Robust against local degradation: Two bundle insulated double pancake coil with a damaged area

- Monotape coil with a damage shows low performance.
- Bundle tape coil with damage shows similar performance to that without a damage at 77K and slightly lower with decreasing temperature.
- Ic difference may be related to Ic distribution in the coil.
 - Bundle winding is effective!

Abe et al., IEEE TAS, 32 (2022) 4603306

20 stacked REBCO pancake coil

20-stacked Coil	
No. of bundled tapes	2
Tape stacking configuration	face-to-back
Inter bundle insulation	fluorine-coated polyimide tape
Inner diameter (mm)	68
Outer diameter (mm)	266
Height of coil (mm)	120
No. of turns / PCs	271-294
I _c of pancake	121-174
<i>n</i> -value of pancake	22-27
No. of pancakes	20

K. Takahashi *et al,* IEEE TAS (2023) 4601405, A. Badel *et al*, IEEE TAS (2023) 4601505, A. Zampa *et al*, IEEE TAS under review.

20 stacked REBCO pancake coil - mechanical property -

Robust coil structure reduces the maximum stress and optimizes its distribution in coil. K. Takahashi *et al,* IEEE TAS (2023) 4601405, A. Badel *et al*, IEEE TAS (2023) 4601505, A. Zampa *et al*, IEEE TAS under review.

Overview of 33T-CSM

LTS outsert

- 14 T- ϕ 320 mm layer wound impregnated coil with Rutherford Cables HTS insert
 - 19 T- \$\$\overline{68}\$ mm (\$\$\overline{32}\$ mm RT bore)
 - Impregnated two REBCO tape co-wound insulation coil

Cooling system

- Conduction cooling with He circulation
- 4 x 4K-GM cryocooler for HTS coils (4 x 1.5W@4.2K)
- 1 × GM/JT cryocooler for LTS coils (8W@4.2K)
- Thermally separated LTS and HTS coils

Protection

• Passible protection with a dump resistor

Others

- < 90min ramping
- Magnetic field monitor

S. Awaji IEEE TAS 31 (2021) 4300105

Primitive design of 33T-CSM

NS3

NS2

NT1

NT2

REBCO CuNb/Nb₃Sn Cu/NbTi Strand 438 867 А lop 34 Rin 210.2 264 321.5 363.9 160 mm 147.2 204.2 258 315.5 357.9 404 Rout mm 325 537.6 571.2 632.5 626.9 627.8 Height mm No of PCs 64 _ No of laver 24 26 28 20 22 _ 5.32 Т 33.27 13.97 10.48 8.06 6.16 Bmax **B**0 т 19.2 3.22 3.26 2.99 1.91 2.63 ტ0.8 Strand size 4.1 x 0.15 mm No of strands 16 16 16 2 18 19 > 6300*2 Ic @4.2K > 2192*1 > 2064*1 > 2322*1 > 8550*2 Α Reinforcement 2 x 0.1 mm --High stress 0.06 0.075 Insulation thick mm A/mm² 220.1 107.8 107.8 95.8 90.8 123.2 Jcon A/mm² 70.1 82.7 Jcoil 154.8 70.1 62.6 61.5 Tcs Κ 6.97 9.74 11.5 6.4 6.69 ____ MPa -51 Axial stress -50 -50 -49 -43 -49 MPa 271 269 247 164 83 -26 Hoop stress *1 12 T, *2 5 T reinforcement

HTS

NS1

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

I_c under mechanical stresses

- Improvement of elctoromechanical and I_c properties with "pre-bending".
- Strands with HT-A has higher I_c than with HT-B.
- Success of the improvement for 33T-CSM

Summary

- Many high field superconducting magnet developments with HTS are on-going in the world.
- We have serious issues for REBCO especially complicated mechanical stress/strain.
- Local degradation due to mechanical stress looks unavoidable for high field superconducting magnet.
- Multi-tapes such as co-winding, cables are necessary at the moment.
- From R&D studies for REBCO tapes, we reached the "robust REBCO coil concept" consisting of two tape co-winding and edge impregnation.
 - Two tape co-winding can reduce the risk of hot-spot due to the local degradation.
 - Edge impregnation can reduce the maximum hoop stress by the optimization of stress distribution, and screening current induced stress.

Field monitor for 25T-CSM

Weibull analysis on delamination strength

Magnetic field monitor with Cu bifilar coil (25T-CSM)

Although large hysteresis appears, the magnetic field can be monitored all the time.

Magnetic field stability of the 25T-CSM (Bi2223)

In case of REBCO with higher J_c , better field stability is expected.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

Screening current induced stress - effect of impregnation -

H. Maeda, ASC2020 Wk2LOr2A-2, Ueda et al, to be published.

Impregnation -> reduce the screening current induced stress.

FEM modelling of 20 pancake coil under 14 T

Modelling assumption : Homogenous J turn to turn separation as soft elastic interface Elastic regime: Young modulus 130 GPa (for tape), 30 GPa (for flanges)

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China

20 stacked REBCO pancake coil

25T was achieved combined with B_{BG} =14 T

Although screening current is dominant on field error, relaxation of coupling current appears first. ASC2022, 1LPo2K-11: K. Takahashi, 4LOr1A-01: A. Badel

Issues and strategies of HTS coil for high field magnet

- ✓ Local degradation (maybe due to a local unexpected stress) should be considered.
 - -> All turns separation to make a delamination stress minimum
 - -> mitigate a possibility of local degradations as small as possible. (stiffness of pancakes)
 - -> more than two tape bundle conductor (two tape co-wind) in order to mitigate a hotspot.
- $\checkmark\,$ Screening current induced magnetic field
 - -> magnetic field monitor works well if its hysteresis is accepted
- \checkmark Screening current induced stress
 - -> high stiffness of coil can reduce it (edge impregnation)
 - -> reduce a volume of polyimide in coils may be more effective (hopefully replace to ceramic insulation)
- $\checkmark\,$ Inhomogeneity and different grade in critical currents
 - -> quality analysis by performances of pancakes
- \checkmark Large stress operation
 - -> optimization of stress distribution and reinforcement (edge impregnation)
- \checkmark Protection for the hot-spot related to local degradation and inhomogeneity is crucial.
 - ✓ Dump resistor (Passive protection) -> need detection and quick dump before burn-out
 - \checkmark No-insulation (self-protection)-> delay of magnetic field and heating are issues.
 - ✓ Quench heater (Active protection) -> need huae power in auench heater with short time

Electromechanical properties - effect of Cu stabilizer -

S. Fujita et al., Presented at MT26, Tue-Mo-Po2.09-02 Y. Zhang et al., IEEE TAS 26 (2016)8400406. Stress tolerance of REBCO decreases with decreasing a volume fraction of Hastelloy.

Effect of stabilizer thickness ratio on critical stress under uniaxial tension

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 March 2024. Plenary presentation given at ACASC 2023, 31 Oct. 2023, Shanghai, China