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Abstract We show that the non-equilibrium dynamic in two-dimensional electron
glasses close to metal-dielectric transition is sensitive to electric fields confine-
ment inside the sample, which leads to a nearly thermally activated conductance
behavior and a strong non-equilibrium conductance response to the gate voltage,
including a memory dip in a field dependence of conductance.

1 Introduction

Low temperature universal behaviors of dielectric constant in amorphous solids
and DC conductivity in doped semiconductors can be used for highly sensitive
low temperature thermometry (see Review 1 and references therein). For instance
the temperature raise in ion-implanted silicon Si:P:B semiconductor thermistors
(bolometers) detected via the change in conductance and caused by the cosmic
x-ray absorption can be used to accurately measure the energy of corresponding
photon. Absorption of an x ray increases the temperature of the semiconductor
and this increase is detected via the conductance change. 2,3 The performance of
bolometers is limited by non-equilibrium “glassy” slow dynamics including slow
relaxation and 1/ f noise. In this paper we discuss the common effects in slow
relaxation existing both in amorphous solids and some semiconductors and sug-
gest the general mechanism of these phenomena. Understanding of the nature of
non-equilibrium dynamics can be useful to find the ways to reduce its destructive
outcomes.
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Fig. 1 Reduction of charge carrier DOS due to the interaction of electron (blue circle with “−”
sign inside) and configurational transition, i. e. dipolar fluctuator, shown by the black arrow and
having a dipole moment ea. If the interaction of fluctuator and electron is very large, the escape
of electron in a direction shown by the blue arrow, must be accompanied by the simultaneous
transition of the fluctuator (state I to state II). This “clustering” effect eliminates the electron
contribution to the system conductance.

Slow relaxation in glassy materials is associated with transitions between local
minima in configurational space separated by high potential barriers. Reasonably
broad distribution of transition barrier heights and lengths results in a logarithmic
relaxation because transition rates depend on these parameters exponentially.

At low temperature (0 − 20K) this logarithmic relaxation is observed in a
variety of disordered materials. Particularly, a sudden application of an external
electric field to amorphous dielectrics results in a fast increase of dielectric con-
stant with its subsequent logarithmic relaxation back to equilibrium 4,5. Similar
behaviour of conductance is observed after sudden application of a gate voltage in
certain two-dimensional hopping insulators including indium oxide6,7,8, ultrathin
films of Bi and Pb9, granular aluminum10,11,12 and nickel13.

Theoretical model, based on the Efros-Shklovskii Coulomb gap theory,14 was
proposed by one of the authors in 199515 to describe the slow non-equilibrium
dynamics in amorphous solids induced by the DC field application.4,5 The at-
tempt to extend this model to the Coulomb glasses has been made in Refs. 16,17.
Below we briefly review these old works and discuss the possible improvements
in theory associated with the low-dimensional field confinement in quasi- two-
dimensional samples. We show that this confinement effect can remarkably en-
hance the strength of the non-equilibrium system response.

2 Model of fluctuators

To characterize the non-equilibrium dynamics one has to model configurational
transitions. In dielectric glasses at low temperature relaxation and aging phenom-
ena are associated with two-level systems 18 (TLS) formed by tunneling transitions
of atoms or groups of atoms between close energy minima separated by varying
potential barriers. TLS possess a universal statistics with respect to their energies,
E, and relaxation times, τ ,

P(E,τ) =
P0

τ
. (1)

TLS interact with conducting electrons because they possess some dipole moment
μ .

In a more complicated case of electronic glass one can introduce the model
of fluctuators16,17 possessing TLS statistics Eq. (1) and representing local system
tunneling rearrangements between close energy minima. Since the transition rate
grows exponentially with the number of entities participating in the transition one
can expect that the number of participants is of order or less than 10; otherwise
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the transition takes too long to be observed. Then such transitions must occur in
small spatial domains because far separated transitions are weakly coupled and
should take place independently. One can characterize these local fluctuators by
some typical dipole moment μ∗ to describe their interaction with electrons.

In dielectric glasses the fluctuators, TLS, can be only of structural nature. In
electronic glasses they can be of electronic or structural nature, or involve both
electron and structural rearrangements. The concept of electronic glass state where
localized electrons are frozen in deep local energy minima formed by an exter-
nal disorder and a long-range electronic interaction has been suggested long time
ago19,20,21 and supported by the extension of spin-glass models to the electronic
glass22. Several microscopic models have been suggested to account for the for-
mation of fluctuator in the disordered system of interacting localized electrons
(see e. g. Refs.23,24,25). It is not clear whether the experimental data in crys-
talline semiconductors indicate the presence of fluctuators there. The 1/ f noise
universal scaling with variable range hopping parameters reported in relatively
thin ion-implanted Si:P,B samples 26 can be, indeed, interpreted using the fluctu-
ator model.25 However, this noise has been remarkably (6 times) suppressed in
1500 nm thick samples annealed at high temperature for a long time so that the
impurity atoms diffuse uniformly through the entire thickness. 27. Therefore it is
not clear whether 1/ f noise is the property of the bulk material or it is associated
with the non-uniform distribution of dopants within the sample. The formation
of electronic glassy state is not strongly supported by the numerical studies as
well. 28,29

In spite of the nature of fluctuators we can use a TLS like model Eq. (1) as-
suming a fluctuator density to be a constant, P∗, and characteristic dipole moments
to be a constant, μ∗. It is convenient to characterize their relationship by the di-
mensionless product P∗μ2∗/κin ≈ χ∗, so one has

P∗ ≈ χ∗κin

μ2∗
. (2)

In amorphous solids χ∗ is a universal parameter of order of 10−3 − 10−4, which
can have a weak (logarithmic) temperature dependence. 5,30 As we will see be-
low, the similar assumption leads to a quantitatively valid estimate of the non-
equilibrium raise of conductance.

3 Field confinement

In previous studies16,17,22,25,29,31,32,33,34 the glassy behavior was investigated in
the standard variable-range hopping regime, where conductance behaves as G ∝
e−(T0/T )n 1/4 ≤ n ≤ 1/214. It turns out that the conductance of many materials
showing glassy behavior possesses a stronger temperature dependence close to
the Arrhenius law, n ≈ 1.9,8,12

We suggest that this behavior is a consequence of a field confinement in 2 di-
mensions (2D)35,36. It takes place if the dielectric constant of the film of interest,
κin exceeds that of the environment, κin � κex1 = (κ1 +κ2)/2 (κ1, κ2 are dielec-
tric constants of materials surrounding our sample from two sides). This definitely
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takes place in materials close to the metal-insulator transition 8,12 where the dielec-
tric constant approaches infinity. One should note that the actual screening of the
Coulomb interaction is associated with the polarization of electronic states rather
than real hopping processes formally making static dielectric constant equal to in-
finity.37 This is so called resonant contribution 38 similar to the one in dielectric
glasses39.

In the confinement regime the interaction of electrons differs from the standard
Coulomb interaction, e2/(κinr)35,36 (see also Ref.40, where the field confinement
was considered for Ti oxide based materials). Particularly, the interaction of two
electrons at short distance r ≤ d/2 can be expressed with the logarithmic accuracy
as

UC(r) =
e2

κinr
+2Δ∗, Δ∗ ≈ e2

κind
ln

(
κin

κ1

)
. (3)

This interaction results in the hard Coulomb gap Δ∗ in a DOS leading to the con-
ductance behavior35,36

G ≈ G0e
− Δ∗

kBT , (4)

Granular materials can be described by the model of interacting localized electrons
in the case of a grain size small compared to the localization length in accordance
with the theory of cotunneling41,42.

Conductance activation energy in granular Al changes from 20 to 40K from
most conductive to less conductive samples of the thickness d ≈ 200Å. 12 Ac-
cordingly, using Eq. (3) we find that internal dielectric constant changes in these
samples from 30 to 100 always exceeding the external dielectric constant κ1 ≈ 5
by at least an order of magnitude.

The confinement model can be verified experimentally modifying the envi-
ronmental dielectric constant, κ1. For example placing the ice possessing high
dielectric constant, κice ≈ 90, on the top of the sample should completely destroy
thermally activated behavior, Eq. (4), for most “dielectric” samples. Also the acti-
vaion energy should decrease with the sample thickness, Eq. (3). The similar trend
is seen in granular Al films43. Indeed samples of thickness 10 and 20 nm having
similar preexponential factors in Eq. (4) have activation energies different by ap-
proximately the factor of 243, i. e. for G0 ≈ 0.8 · 10−5Ω one has Δ∗10/kB = 31K
and Δ∗20/kB = 14K, while for C0 ≈ 0.18 · 10−5Ω one has Δ∗10/kB = 57K and
Δ∗20/kB = 23K, respectively. Therefore we believe that our model is relevant for
granular Al.

4 Non-equilibrium Dynamics

The only parameter in the definition of conductance Eqs. (3), (4) sensitive to the
slow relaxation of fluctuators is the internal dielectric constant, κ in. Following Eq.
(4) one can express the non-equilibrium part of conductance in terms of the related
nonequilibrium contribution to the dielectric constant, which depends on time and
gate voltage, as

δG(V, t)
G

≈ Δ∗
kBT

δκin(V, t)
κin

. (5)
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Fig. 2 Typical shape of memory dip

It is quite natural to expect that the resonant dielectric constant of Anderson in-
sulators with fluctuators behaves similarly to that in amorphous solids 4,5,15 giving
rise to the experimentally observed non-equilibrium conductance behavior.

A general mechanism for the non-equilibrium relaxation of conductance, ear-
lier used to interpret experimental data for dielectric constant in glasses 5,15, can
be described as following16,17. Electronic DOS decreases due to interaction of
fluctuators with electrons in localized states (see interaction of electron with local
fluctuator shown in Fig. 1). If this interaction is sufficiently strong then the elec-
tron needs the large energy of that interaction to leave or enter this state. At low
temperature such process becomes forbidden and the only possible excitation of
electron must be accompanied by the fluctuator transition occurring very rarely
compared to electron hopping time. Therefore this electron cannot efficiently re-
spond to the external electric field, i. e., contribute to hopping conductivity or
dielectric constant. Thus the equilibration of the system after its disturbance, e.
g. by the gate voltage, results in a slow reduction of conductance by means of
trapping of low energy electrons, primarily released after the application of a gate
voltage, by relaxing fluctuators.5

Important experimental data characterizing glassy behavior were obtained in
the memory dip measurements8,12. Memory dip is seen in conductance after a fast
sweep of the gate voltage around its equilibrium value, Vg = 0 where it was hold
before for tens of hours (see V -shaped conductance dependence on that voltage
in Fig. 2). The greater the voltage the stronger the system departs from equilib-
rium increasing the conductance, according to the previously described scenario.
Memory dip can be characterized by its half-width Γ1/2 and depth δGmax/G.

The temperature dependence of conductance, G, memory dip parameters, Γ1/2,
and δGmax/G contain significant information about the nature of the electronic
glassy state. Here we suggest the theoretical model of electronic glass involving
the 2D field confinement, which is capable to interpret several observed behaviors
at intermediate temperature, 4K≤ T ≤ 20K, including (A) linear temperature de-
pendence of a memory dip half-width and its universality with respect to a sample
conductance12 (cf.8) and (B) nearly T−2 dependence of ΔG/G slightly varying
for samples with different conductances 12.
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Consider the effect of fluctuators on the dielectric constant determining the
memory dip Eq. (5). The dielectric constant is associated with the polarization of
electron-hole pairs of various lengths r, smaller than the hopping length. Similarly
to Ref.15 the part of dielectric constant most sensitive to its interaction with fluctu-
ators is associated with low-energy electron-hole pairs separated by intermediate
distance, r, such that a< r < d/2. It is harder to disturb shorter dipoles due to their
large tunneling splitting, Δ0 ≥ kBT0 � kBT , while longer pairs do not make impor-
tant contribution due to the “hard” Coulomb gap at corresponding energies caused
by the field confinement in 2D. Let those dipoles be characterized by the density
function F(Δ ,r) depending on their energy, Δ and size r. This size determines
the tunneling amplitude of electron between two localized states, Δ 0 ≈ E0e−r/a,
E0 ≈ kBT0. Then one can approximate the contribution of interest to the dielectric
constant as (c. f. 14,38)

Δκin ≈ 2πe2

3

∫ d
2

a
r4dr

∫ ∞

−∞
dΔ

Δ 2
0 F(Δ ,r)

E3

× tanh

(
E

2kBT

)
; E =

√
Δ 2 +Δ 2

0 . (6)

This contribution is identical to the resonant contribution of two level systems to
the dielectric constant in amorphous solids 5,15. The relaxational contribution does
not affect the effective Coulomb interaction as demonstrated in Ref. 37 using both
analytical and numerical studies.

In the absence of fluctuators the density function of sufficiently large dipoles,
a < r < d with the energy, E ∼ kBT , can be approximated by14,38

F(E,r)≈ 3
10π2

(κin

e2

)6
(

e2

κinr
+E

)5

≈ 3
10π2

κin

e2r5 , (7)

where a small energy, E ∼ kBT , can be approximately neglected.
Consider the change in dipolar density and, correspondingly, conductance in-

duced by the gate voltage sweep to some value Vg. This gate voltage creates elec-
tric field inside the sample, which can be estimated as FDC ≈Vgκ1/(κindtot), where
dtot is the thickness of insulating layer separating the sample from the gate elec-
trode. In the granular Al dtot ∼ 10nm � d. This estimates is not valid at very
small gate voltage where the distance between injected electrons exceeds the sam-
ple thickness d. However for granular Al samples of 200 nm thickness at T > 4K
this is not the case for gate voltages of interest 12.

The interaction of dipoles with fluctuators reduces their density of states 15,17.
Only interaction exceeding the thermal energy is important. We assume, that the
distance between the fluctuator and closest charge of the dipole is smaller than
the size of the dipole r, which is necessary to make the interaction larger than the
thermal energy. This is true for r ∼ d/2 and T > 4K11. Then the correction to
the dipole density due to fluctuators with relaxation times τ within the domain,
tmin < τ < tmax,can be expressed as16,17

δF(E,r)
F(E,r)

≈−32π
15

Δ
E

P∗E0a3
[

E0

E

]1/2

ln

(
tmax

tmin

)
. (8)
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The time dependence is due to a logarithmically uniform distribution of fluctuator
relaxation time (Eq. (1)), tmax stands for the time the system spent after being
cooled down and tmin is some characteristic minimum time, determined by the
rate of a gate voltage application.

Substituting Eq. (8) into Eq. (6), performing the straightforward integrations
and substituting the final result into Eq. (5) we obtain the following expression for
the fluctuator correction to the conductance

δC
C

≈−32
√

2χ∗
75

Δ∗
kBT

√
E0

kBT
ln

(
d
2a

)
ln

(
tmax

τmin

)
. (9)

This equation describes the aging effect. It can be also used to describe the con-
ductance time dependence after the application of a large gate voltage bringing
all relevant fluctuators out of equilibrium. Then the minimum time should be
replaced with the waiting time t and the sign of the expression should be re-
verted. The temperature dependence of the conductance logarithmic relaxation
rate r = d ln(C)/d ln(t) is close to the power law r ∝ T −3/2 that is consistent with
the observations of Ref.9 in ultrathin films of Bi and Pb.

Consider the shape of the memory dip (Fig. 1). The energy change of fluctu-
ator with the dipole moment μ associated with the application of a gate voltage
Vg is given by δE = Fgμ cos(θ ) ≈ Vgκ1μ cos(θ )/(κindtot), where θ is the angle
between directions of the dipole moment and the external electric field Fg, dtot is
the distance between sample and gate electrode and k1 is the dielectric constant
of the insulating layer separating the gate electrode from the sample (see Refs. 12,8

for details). Only fluctuators with sufficiently small energy E, 0 < E < δE, will
be really disturbed from their equilibrium states. This condition sets the upper
constraint δE for integration over energy in Eq. (6). Also the time dependent log-
arithm ln(tmax/tmin) in Eq. (6) should be modified. It is determined by the contri-
bution of fluctuators removed from equilibrium by the gate voltage, which possess
the relaxation time smaller than the maximum time tmax, determined by the time
the sample was kept at fixed temperature after cooling and larger than the mini-
mum time, tmin, determined by the gate voltage sweep rate, rs, as tmin ∼ kBT/(ers).
Then the memory dip can be described by the equation

δC(Vg)

C
≈−32

√
2χ∗

75
Δ∗

kBT
ln

(
d
2a

)

× ln

(
tmaxrseκ1

kBTdtot κin

)[√
E0

kBT
−2

√
E0dtot κin

Vgeaκ1

]
. (10)

Using this result one can estimate the half width of the memory dip as

Γ1/2 ≈ 16
kBT

e
κindtot

κ1a
. (11)

‘ This result agrees with the experimentally observed linear temperature depen-
dence of the memory dip width at temperatures T ≥ 4K12,8. At lower temperatures
the dependence is getting stronger. In our opinion this is because the estimate for
gate voltage induced electric field, Fg ≈V (1/2)

g κ1/(κindtot), is no longer valid. One

7 of 11

--
Text Box
IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 18, October 2011




8

can use that macroscopic expression if the density of electrons injected due to the
application of a gate voltage exceeds one electron per the cubic sample thickness.
This is satisfied for granular Aluminium samples down to 4K10, but fails at lower
temperatures, where this field is defined by the injected electron, closest to the
given fluctuator. One can show that at low temperatures a width of memory dip is

proportional to squared temperature, V (1/2)
g ∼ (kBT )2

e
d2d1κ2

in
e2κ1a2 .

The quantitative universality of the memory dip halfwidth discovered in 12 for
samples with conductances different by orders of magnitude requires understand-
ing. It is important that in the vicinity of a metal-insulator transition the ratio
of two diverging parameters, εin/a, is expected to be approximately constant on
the dielectric side both in accordance with the theoretical analysis and experi-
mental data 45. One can naively expect that at the scale of localization length
the characteristic kinetics and Coulomb energies should be close to each other,
E0 = e2/(κina) ≈ h̄2/(ma2), which makes the ratio, a/εin ∼ h̄2/(me2) ≈ 0.5Å,
universal. It expresses the Bohr’s radius, aB (here m is the effective mass of elec-
tron, which is taken to be equal to the bare electronic mass).

Under these assumptions Eq. (11) results in the universal dependence of the
memory dip halfwidth on the gate voltage Γ1/2 = ηT with the proportionality co-
efficient coefficient η depending only on the thickness dtot and dielectric constant
κ1 of the layer separating the sample and the gate electrode. For granular Alu-
minium sample one has κ1 ≈ 9, dtot = 1000Å which yields η = 0.29V K−1 in
excellent agreement with the experimental result η ≈ 0.25V K−1 12.

The same approach does not work so good for the half-width of the memory
dip reported in Ref.8 for In2O3−x sample having a relatively small resistance of
200kΩ . We believe that this is because the localization length in this almost con-
ducting sample exceeds the thickness of the sample dInO ∼ 30Å and therefore one
should replace the localization length a in Eq. (11) with the sample thickness. As-
suming that the localization length exceeds the sample thickness by an order of
magnitude one can make the experimental data consistent with the theory. Other
data reported in Ref.8 correspond to very low temperatures. However, in granular
Aluminium one can estimate, fitting activation energy 20−40K with Eq. (3) and
using the relationship, a ≈ 0.5κin(Å), that the localization length is small enough,
15Å < a < 50Å, in all samples of thickness 200Å so our estimate is justified.

The temperature dependence of the depth of the memory dip in Eq. (10) in
the limit of Vg → ∞ is expressed by the power law, ΔC/C ∝ T−3/2, and addi-
tional weak temperature dependencies of the dimensionless parameter χ∗ and the

logarithmic factor ln
(

tmaxrskex
kBTdtot κin

)
. Integration of these three dependences could be

responsible for the T−2 behavior of the memory dip depth reported in Ref.11.

According to the experiment11 the absolute value of the relative correction
reaches few percents at T ∼ 4K for less conducting sample, which is consistent
with Eq. (10) if one set χ∗ ∼ 5 ·10−4 in agreement with the typical values of that
parameter in amorphous solids5.
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5 Conclusion

Thus we suggested the model of slow dynamics in electronic glasses due to fluc-
tuators behaving similarly to TLS in amorphous solids. The model is consistent
with existing experimental data both qualitatively and quantitatively. Theoretical
predictions, Eqs. (10), (11) can be tested varying system parameters including
electron localization length, sample thickness and temperature.
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