

Cryogenics at The European Spallation Source

J. G. Weisend II, P. Arnold, J Fydrych, W. Hees, J. Jurns, X.L. Wang

July 2014

Outline

- Introduction to ESS
- Applications of Cryogenics at ESS
 - Accelerator Cryoplant
 - Cryogenic Distribution System
 - Target Moderator Cryoplant
 - Test and Instruments Cryoplant
- He Recovery and Storage
- Energy Recovery
- Opportunities for In-Kind Contributions
- Summary

Introduction to ESS

The goal of ESS is to provide a spallation based neutron source significantly more powerful than existing sources: 30 times brighter than ILL and 5 times more powerful than SNS

This facility will enable neutron based research in a wide range of fields including: materials science, condensed matter and biomedical studies

Why Neutrons? Neutrons and x-rays are complementary

..see magnetic atoms

.. see atoms move

..see inside materials

..see light atoms

ESS Overview

A European Science Project

The view of the Southwest in 2025

ESS Linac

	Energy (MeV)	No. of Modules	No. of Cavities	βg	Temp (K)	Cryo Length (m)
Source	0.075	I	0	_	~300	_
LEBT	0.075	_	0	_	~300	_
RFQ	3.6	I	I	_	~300	_
MEBT	3.6	_	3	_	~300	_
DTL	90	5	5	_	~300	_
Spoke	220	13	2 (2S) × 13	0.5 β _{opt}	~2	4.14
Medium β	570	9	4 (6C) × 9	0.67	~2	8.28
High β	2000	21	4 (5C) × 21	0.86	~2	8.28
HEBT	2000	_	0	_	~300	_

Prototyping the ESS accelerator

Applications of Cryogenics at ESS

- Cooling for the cryomodules (2 K, 4.5 300 K and 40 K)
- Cooling for the Target supercritical H₂ Moderator (16.5 K)
- Liquid Helium and Liquid Nitrogen for the Neutron Instruments
- Cooling for the cryomodule test stand (2 K, 4.5 300 K and 40 K)
- This is accomplished via 3 separate cryoplants

Accelerator Cryogenics

- Bulk of acceleration is carried out via 3 classes of SRF cavities: Spoke, Medium (β = 0.67) Beta Elliptical and High (β = 0.86) Beta Elliptical
- No superconducting magnets in the accelerator. There are some in the instruments
- Cavities operate at 2 K with a 40 50 K thermal shield
- Inner power coupler cooling from 4.2 K to 300 K
- Accelerator lattice permits an 14 additional cryomodules to compensate for lower than expected cryomodule gradients (Stage 2)

Elliptical Cryomodule Components

Spoke cavity string and cryomodule package

Cryomodule Heat Load Distribution

	Watts to 2 K							4.5 K Liquefaction (g/s)	Watts to ∼50 K
	Static				Dynamic			Total	Total
	Others	Valves	Coupler	Total	Beam	Cavity	Total		
1 Spoke	3.3	0.2	3.5	7	1.5	5.0	6.5	0.092	30
1 MB	6.3	0.2	6.8	13.3	3.3	20	23.3	0.092	46.5
1 HB	6.3	0.2	6.8	13.3	3.3	24.4	27.7	0.092	46.5

Connection between Elliptical Cavity CM and Cryogenic Distribution Line

He II produced at each CM

Version 20140227a NE

ESS Accelerator Cryoplant (ACCP)

- Provides cryogenic cooling to Cryomodules
 - 13 Spoke and 30 Elliptical (Stage 1)
 - Sized to allow an additional 14 Elliptical Cryomodules for design contingency (Stage 2)
- Allows for number of operating modes
- Connected to the cryomodules via a cryogenic distribution system
- High availability and turn down capability are important features
- Compressor heat is absorbed by Lund District Heating System (unique ESS feature)

July 2014 ICEC 25 - J.G. Weisend II

ACCP Capacities

Operation modes		2 K Load, W			4.5 K Load		40-50 K, W		
		Isothermal	Non- isothermal	Total	4.5 K, W Total	Liquefaction, g/s	Total		
Stage 1 2019- 2023	Nominal	1860	627	2478		6.8	8140		
	Turndown	845	627	1472		6.8	8140		
	Standby	•			1472	6.8	8140		
	TS Standby	-	-	_	-	-	8140		
	Maximal	Loads in standby mode plus maximum liquefaction rate at rising level into the storage							
	Liquefaction	tank							
Stage 2 2023	Nominal	2226	824	3050		9.0	10819		
	Turndown	1166	824	1990	-	9.0	10819		
	Standby				1990	9.0	10819		
	TS Standby	-	_	-	-		10819		
	Maximal	Loads in standby mode plus maximum liquefaction rate at rising level into the storage							
	Liquefaction	tank							

ACCP Status

- Heat loads and capacities determined
- Industry studies completed
- Design choices have been made
 - No LN₂ precooling
 - Optimized cold compressor and turboexpander hardware for Stage
 1 & Stage 2 to minimize energy consumption
- Detailed Specification and SOW complete and ITT released
- Expected placement of order in February 2015
 - Installation, LHe and GHe storage and Helium Recovery will be separate procurements
- Plant is expected to fully commissioned by June 2018

Cryogenic Distribution System Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 System

- Allows warm up and cool down of one or more cryomodules w/o affecting remaining cryomodules
- Connection between distribution line & cryomodule is done via fixed connections
- Separate isolation vacuums in the distribution lines and cryomodules
- Operating modes defined
- Conceptual design complete
- Detailed design and production via IKC or commercial contract will start by Q3 2014
- Cryogenic Distribution System must be complete and installed by December of 2017

Linac CDS – function and layouts

Cryogenic System of the Optimus Linac

Superconducting section of the Optimus Linac (303 m)

Valve box – vacuum jacket

Cryogenic Distribution Line

Elliptical Cryomodules in ESS Tunnel

Target Moderator Cryoplant

- Cools the Supercritical H₂ neutron moderators that surround the target
- Provides 20 kW of cooling at 16.5 K via GHe to the He/ supercritical H₂ heat exchanger
 - Moderator design is still under development and final heat load won't be known until summer 2014
 - ESS Target Division responsible for the supercritical H₂ system
- Compressor heat is absorbed by Lund District Heating System (unique ESS feature)
- Cryoplant should be ordered in August of 2015 and fully commissioned by June of 2018

Draft Schematic of LH₂ Moderator Loop showing connection to the Target Cryoplant

Test and Instruments Cryoplant

- Provides cooling at 2 K, 40 K and 4.5 K liquefaction for elliptical cryomodule testing
 - 2 K operation done via warm vacuum pumps
- During ESS operations, provides up to 7500 | per month of LHe to the instruments
 - Helium is recovered, purified and reliquefied
- Sufficient LHe storage planned to allow several weeks of Science Ops in the case of cryoplant failure

Test and Instruments Cryoplant Capacity and Status

- The plant will produce:
 - 75 W @ 2 K,
 - 422 W @ 40 K
 - 0.4 g/s at 4.5 K for coupler cooling
- A plant this size exceeds the 7500 l / month liquefaction requirement
- Cryoplant should be ordered in August 2015 and fully commissioned by July 2017

Cryomodule Test Stand Showing Connection to T&I Cryoplant

Helium Recovery and Storage

- The ESS goal is to recovery, purify and reuse as much He as possible
- ACCP and TICP cryoplants will share a common gas system while TMCP has separate storage that can be cross connected
- The system will include a separate cryogenic purifier
- Systems will be provided by IKC or separate contracts
- Expected He Storage Capacities:
 - LHe
 - 20 m³ (Includes storage for second fill of linac)
 - 5 m³ (Backup for Instruments He)
 - GHe (20 Bar)
 - 900 m³ sufficient to hold all the linac inventory
 - GHe (200 Bar)
 - 12 m³ Instrument He storage

Conceptual ESS Cold Box Room Layout

The ESS Commitment: A Sustainable Research Centre

✓ Responsible

Energy Efficiency

✓ Recyclable

ESS's cooling is Lund's heating

✓ Renewable

Power from renewable sources

32

Energy Inventory ESS 2012

Energy Recovery from ACCP Compressors

34

Opportunities for In Kind Contributions to the ESS Cryogenic System

35

- There are many opportunities for IKC in the ESS Cryogenics System and we are very happy to discuss any of them.
- Possibilities include:
 - Cryoplants (particularly the TMCP and TICP)
 - Cryogenic Distribution System
 - He Recovery and storage
 - Assistance with installation and commissioning

ESS Cryogenic System

High Level Schedule

Summary

- Cryogenics will play a major role in ESS and affects the accelerator, target and instruments projects
- Work is well underway
 - A very skilled team has been assembled
 - Industry studies for the largest of the plants have been completed
 - Conceptual designs and technical specifications are complete or under preparation
 - Required buildings and utilities have been defined and are under detailed design
 - Sizable procurements will start in 2014 and 2015
- Significant Opportunities for IKC exist
- ESS has just received the green light to start construction