

1

Superconducting Photonic lano Structures Laboratory

Photon Number Resolving Superconducting Nanowire Single-Photon Detectors

Marco Colangelo

Electrical and Computer Engineering Nano System Innovation Institute Northeastern University

ma.colangelo@northeastern.edu

Superconducting nanowire single-photon detectors (SNSPD)

Superconducting nanowire single-photon detectors (SNSPD)

SNSPD performance metrics

iotonic

Jantum

Nano Structures Laboratory

Northeastern

University

4

Application of SNSPDs

Photonic Quantum Computing

Science 370.6523 (2020): 1460-1463.

Quantum Networks and Repeaters

Nature 589.7841 (2021): 214-219.

Biomedical applications

ACS nano, *16*(8), 12930-12940.

High-energy physics

Physical Review D 106.11 (2022): 112005.

Environmental sensing and space applications (DSOC)

Nano Letters 22.14 (2022): 5667-5673

www.nasa.gov/mission/deep-space-opticalcommunications-dsoc/

Single-photon LIDAR

In CLEO 2020 - SM2M-6. Optica Publishing Group.

Photon Number Resolution

The ability to distinguish the number of photons in an optical packet

**IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.
ICEL SECONDER SOLVE THE NUMDER OF PHOTONS?**

A non-exhaustive list

We need to know if it is exactly one or more

Quantum key distribution security (e.g., photon splitting attack against BB84 protocol)

Physical review letters 85.6 (2000): 1330. Physical review letters 94.23 (2005): 230504 Physical Review A 73.3 (2006): 032305.

Linear Optical Quantum Computing (LOQC) protocols (KLM)

Nature 409.6816 (2001): 46-52. Reviews of modern physics 79.1 (2007): 135

Generation and detection of non-classical states

Science advances 5.10 (2019): eaaw8586. New Journal of Physics 8.1 (2006): 4.

Quantum repeaters

Physical Review A 92.2 (2015): 022357. Applied Physics B 122 (2016): 1-8.

Standards definition

Metrologia 47.5 (2010): R15

Quantum-enhanced metrology (e.g., SNR improvement in LIDAR)

J. Opt., vol. 19, no. 9, 2017

SNSPDs are not intrinsically PNR*

SNSPDs are not intrinsically PNR*

The output voltage is not sensitive to the number of photons

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

How do we get photon-number resolution in SNSPDs?

Multi-element approach

$\mathsf{Multi-element}$ approach $-\mathsf{Amplitude}$ and $\mathbb{S}^{\text{\tiny{IEEE-CSC, ESAS and CSSJ SUPERCopy }UCTIVITY NEWS\text{\tiny{FOS}}}}$ For UM U and $\mathsf{U}^{\text{\tiny{RIEE-CSC, ESAS and CSSJ SUPERCopy }UCTIVITY NEWS\text{\tiny{FOS}}}}$ and $\mathsf{U}^{\text{\tiny{RI}}}$ and $\mathsf{U}^{\text{\tiny{RI}}}$ and $\mathsf{U}^{\text{\tiny{RI}}}$ and $\mathsf{U$

Parallel Nanowire Detector (PND)

Nature Photonics 2.5 (2008): 302-306. (TU/e)

Series Nanowire Detector (SND) Applied Physics Letters 101.7 (2012). (TU/e)

Multipixel array Nano Letters 23.13 (2023): 6018-6026. (UGeneva) 4567894041424344

Quantum Computing, Communication, and Simulation IV. Vol. 12911. SPIE, 2024

$\mathsf{Multi-element}$ approach $-\mathsf{Temporal}$ and card and $\mathsf{Relay-line}$ Ine multiplexing Fun

Temporal multiplexing

Physical Review A 95.2 (2017): 023815. (Paderborn University) Optics express 21.1 (2013): 893-902 (Glasgow/TUDelft)

3 clicks 4 clicks 5 clicks 6 clicks 2.5×10^5 5.0 $\times 10^5$ 7.5 $\times 10^5$ 1.0 $\times 10^6$ 7 clicks 8 clicks Probe state intensity $|\alpha|^2$

Delay-line multiplexing

Nature nanotechnology 13.7 (2018): 596-601 (MIT).

Multi-element approach – Fidelity

How well is a detector determining how many photons we have?

Assume we are illuminating a spatially multiplexed array with N elements with η using *n* **photons**

$$
P_{\eta}^{N}(n|n) = \left(\frac{\eta}{N}\right)^{N} \frac{N!}{(N-n)!}
$$

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

How do we get photon-number resolution in SNSPDs?

Single-element approach

Pulse amplitude PNR

× 50 Ω Independent from number of photons

We can't simply swap the 50Ω

STaND: Superconducting Tapered Nanowire Detector, *ISS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.*

lano Structures Laboratory

University

$$
n_{\text{eff}} = c \sqrt{\mathcal{L}C}
$$

$$
Z_0 = \sqrt{\mathcal{L}/C}
$$

 $\mathcal{L}_K \approx 1 \text{ nH}/\mu \text{m}$

About 1000 larger than the geometric inductance

STaND: Superconducting Tapered Nanowire Detector, *ISS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.*

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.
STAND: SuperCONducting Tapered Nanowire Detector

STaND: Superconducting Tapered Nanowire Detector Poisson light *IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.*

Perfect two-photon detector

This detector is effectively like a spatially multiplexed multipixel detectors with many elements

Hong-Ou-Mandel Interference

Standard HOM

20 Nano Letters 20.5 (2020): 3858-3863.

SNSPD performance metrics

Impedance-matched differential architecture

Impedance-matched differential architecture Tested at 0.85 K *IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.*

With 85% efficiency and 12.1 ps jitter and imaging capabilities

uperconducting

ano Structures Laboratory

Next opportunities for this technology

Development of specialized cryo-electronics for:

- Amplification
- Active Quenching
- Comparators
- Integrators
- Logic circuits
- Biasing circuits
- Array multiplexing support
- Differential technology support

Cryo-CMOS

IEEE Transactions on Microwave Theory and Techniques (2024).

Applied Physics Letters 124.19 (2024).

Northeastern EXP @ Boston Campus

- 200 mm fabrication facility
- Equipped with state-of-the-art nanofabrication tools
- Equipped for superconducting device fabrication
- Equipped for cryogenic measurements

- SNSPDs technology
	- Performance improvement
	- Heterogenous integration
	- New applications
- Nanowire microwave technology
	- High-kinetic inductance nanowire microwave devices

Acknowledgements

Funding Collaborators

Prof. Daniel F. Santavicca

Dr. Boris Korzh Dr. Matt Shaw Dr. Jason Allmaras Dr. Emma Woolman Dr. Andrew Beyer Dr. Alex Walter Prof. Maria Spiropulu

NIST

Dr. Adam McCaughan Dr. Marty Steven Dr. Saewoo Nam Dr. Richard Mirin

Dr. Alex Kozorezov

Lancaster University

Prof. Phil Mauskopf

Prof. Marko Loncar Dr. Bart Machielse

Prof. Renato Gonnelli Dr. Erik Piatti

Prof. Karl K Berggren Prof. Dirk R. Englund Prof. Kevin P. O'Brien

Jacobs Presidential Fellowship Claude E. Shannon Award

ECCS-1509486 (Jitter) ECCS-1839197 (TAQS1) ECCS-2000743 (Kinetic Inductance) ECCS-2137723 (TAQS2) EEC-1941585 (CQN)

DARPA

DETECT Invisible Headlights

Thank you!

Questions?

ma.colangelo@northeastern.edu

