Design of partial superconducting motor:
Last brick of a superconducting and cryogenic powertrain

A. COLLE¹, R. ABDOUH¹, L. YBAÑEZ¹

¹Airbus UpNext, 31300 TOULOUSE
1. ASCEND

2. Potential gain using superconductors
 2.1. Electrical motor general equations
 2.2. Superconductivity on the stator side
 2.3. Superconductivity on the rotor side

3. Design of a partial superconducting motor for aircraft applications
 3.1. Models and topologies
 3.2. Design of a 500 kW motor
 3.3. Extrapolation to MW-class motor application
A 3 years project to manufacture and test a ground demonstrator composed by:

- A cryogenic electrical protection
- An AC and a DC distribution with SC cables
- A motor control unit cooled at cryogenic temp.
- A SC motor
- A cryogenic cooling system with the cryocooler technology for the project **BUT** could be LH2 storage in future aircraft (large cooling power)

Fig 1. All components of the cryogenic powertrain
1- **ASCEND**: Advanced Superconducting and Cryogenic Experimental powertrain Demonstrator

The design that will be presented here consider:

- A mechanical power of **500 kW** at **5000 rpm**
- Limit the supply voltage to a low value → $V_{DCbus} = 300$ V
- Limit the power factor of the machine to a minimal value of 0.85 → Limit the switching current on the line below 1800 A.
- Coolant at a temperature of around 25 K and conductors below 35 K

Fig 1. All components of the cryogenic powertrain
2- Electrical motor general equations

1. Torque ~ \(\text{Vol}_\text{rotor} \times K_s \times B_g \)

- \(\text{Vol}_\text{rotor} \): volume of the rotor \([m^3]\)
- \(B_g \): Magnetic field density in air-gap \([T]\)
 - \(B_g = f(\text{PM}, 1/g^2) \)
- \(K_s \): Linear current density \([A/m]\)
 - \(K_s = J_s \times hss \)
- \(J_s \): Surface current density \([A/m^2]\)
 - Copper: \(J_s \sim 10 \text{ A/mm}^2 \) (oil/water cooling)
 - SC: \(J_s \sim 100 \text{ A/mm}^2 \) (cryogenic cooling system)

2. Power = Torque * Rotating speed

![Electric motor scheme](Fig. 2. Electric motor scheme)
2- Superconductivity on the stator side

K_{s_rms}: Linear current density of the stator

$$T = \text{Vol}_\text{rot} \cdot B_{g_max} \cdot K_{s_rms} / \sqrt{2}$$

$$h_s = T / (2\pi \cdot R_{g3} \cdot \text{Asp_rat} \cdot B_{g_max} \cdot J_s)$$

Lower radius could demagnetize the PM

- $K_s = \text{Armature reaction}$
 - Risk of PM demagnetization
 - Increase the switching of the PE

- Impact on the AC losses?
 - Several tapes in // to drive the nominal current

Fixed value:
- $T = 1000 \text{ N.m}$
- $B_{g_max} = 0.9 \text{ T}$
- $\text{Asp_rat} = 0.3$

Fig. 3. Active mass versus the rotor volume
2- Superconductivity on the stator side

K_s_rms: Linear current density of the stator

\[T = \text{Vol}_{\text{rot}} \cdot B_{g_{\text{max}}} \cdot K_s_{\text{rms}} / \sqrt{2} \]

\[h_s = \frac{T}{(2\pi \cdot R_g^3 \cdot \text{Asp_rat} \cdot B_{g_{\text{max}}} \cdot J_s)} \]

Mass can be divided by 2 with a SC winding on the stator

- Could be higher depending on the heat extraction system of the conventional system.

- Considering the passive components of a SC motor, what about this gain?

Fixed value:
- \(T = 1000 \text{ N.m} \)
- \(B_{g_{\text{max}}} = 0.9 \text{ T} \)
- \(\text{Asp_rat} = 0.3 \)

Fig. 3. Active mass versus the rotor volume
2- Superconductivity on the stator side

Kₚₛ_rms: Linear current density of the stator

\[T = \text{Vol}_\text{rot} \cdot B_{g_{\text{max}}} \cdot K_{s_{\text{rms}}} / \sqrt{2} \]

\[hs = T / (2\pi \cdot R_{g^3} \cdot \text{Asp}_{\text{rat}} \cdot B_{g_{\text{max}}} \cdot J_s) \]

Thick slot:
- Back-iron heavier
- Thicker teeth
- Cooling of the conductors

\[\text{Mass}_{\text{BI}} \propto (R_o^2 - R_i^2) \]

Fixed value:
- \(T = 1000 \text{ N.m} \)
- \(B_{g_{\text{max}}} = 0.9 \text{ T} \)
- \(\text{Asp}_{\text{rat}} = 0.3 \)

Fig. 4. Slot thickness versus the air-gap radius
2- Superconductivity on the stator side

\(K_{s_{\text{rms}}} \): Linear current density of the stator

\[T = \text{Vol}_{\text{rot}} \cdot B_{g_{\text{max}}} \cdot K_{s_{\text{rms}}} / \sqrt{2} \]

\[h_s = T / (2\pi \cdot R_g^3 \cdot \text{Asp}_{\text{rat}} \cdot B_{g_{\text{max}}} \cdot J_s) \]

Thin slot

Thick back-iron

- Back-iron heavier

\[h_{BI} \propto \text{Arc}_{\text{pole}} \times (B_g / B_{\text{sat}}) \]

Fixed value:
- \(T = 1000 \text{ N.m} \)
- \(B_{g_{\text{max}}} = 0.9 \text{ T} \)
- \(\text{Asp}_{\text{rat}} = 0.3 \)

Fig. 4. Slot thickness versus the air-gap radius
2- Superconductivity on the stator side

$K_{s\;rms}$: Linear current density of the stator

$$T = \text{Vol}_{\text{rot}} \cdot B_{g\;\text{max}} \cdot K_{s\;rms} / \sqrt{2}$$

$$hs = T / (2\pi \cdot R_{g}^3 \cdot \text{Asp_rat} \cdot B_{g\;\text{max}} \cdot J_{s})$$

Potential gain on the iron mass with a SC “cryo-copy” topology!

Fixed value:
- $T = 1000$ N.m
- $B_{g\;\text{max}} = 0.9$ T
- $\text{Asp_rat} = 0.3$

Fig. 4. Slot thickness versus the air-gap radius
2- Superconductivity on the rotor side

B_{g_max}: Air-gap flux density

$$T = Vol_{rot} \cdot B_{g_max} \cdot K_{s_rms} / \sqrt{2}$$

Fixed value:

- $B_{g_max} = 1.1$ T
- Look for the same flux

Magnetization with PM:

- High torque/power density
- No demagnetization possible

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.
B _g _max: Air-gap flux density

\[T = Vol_rot \cdot B_g_max \cdot K_s_rms / \sqrt{2} \]

Fixed value:

\[B_g_max = 1.1 \text{ T} \]

Look for the same flux

Magnetization with PM:

- High torque/power density
- No demagnetization possible

Magnetization with copper coils:

- Weight x2
- Higher losses to extract
- Armature reaction
- Stop the supply

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.
2- Superconductivity on the rotor side

B_g_max: Air-gap flux density

\[T = \text{Vol}_{\text{rot}} \cdot B_g_max \cdot K_s_rms / \sqrt{2} \]

Fixed value:

- \(B_g_max = 1.1 \text{ T} \)
- Look for the same flux

- **Magnetization with PM:**
 - High torque/power density
 - No demagnetization possible

- **Magnetization with copper coils:**
 - \(J_s = 10 \text{ A/mm}^2 \)
 - Weight \times 2
 - Higher losses to extract
 - Armature reaction
 - Stop the supply

- **Magnetization with SC coils:**
 - \(J_s = 400 \text{ A/mm}^2 \)
 - Highest torque/power density
 - Low losses (with care)
 - Can be obtained at 60K
2- Superconductivity on the rotor side

B_g_max: Air-gap flux density

\[T = \text{Vol}_\text{rot} \cdot B_{g\text{,max}} \cdot K_{s\text{,rms}} / \sqrt{2} \]

Magnetization with SC coils:

Js = 400 A/mm²

A fully SC motors:
- Interesting solution in the future: Reduction of the rotor volume and the use of iron
- BUT need reliable and lightweight rotating cryogeny at krpm level

The effort of ASCEND is on the development of AC coils and the extraction kW of losses at cryogenic temperature. Moreover, a partially SC motor on the AC side is the natural way to integrate it in the powertrain.

- Highest torque/power density
- Low losses (with care)
- Can be obtained at 60K
3- Models and topologies

Model with components considering in the mass balance:

- Cryostat
- Back iron
- SC coils
- PMs
- Bearings
- Shaft
- Torque transmission

Fig. 5. Model considered for the mass balance

Two windings was investigated:

Fig. 6. Two types of armature winding considered

AC losses models:

- 2D T-A model

\[\rho_{HTS} = E_c \left(\frac{J}{J_c} \right)^n \]

Fig. 7. T-A model on COMSOL
3- Design of a 500 kW motor - MASS

Total mass vs Power factor (PF):

- Different aspect ratio of the motor was considered
 \[Asp_rat = 2 \times \frac{R_g}{L} \]
 → No impact on the total mass

- With a target of the switched current < 1800 A (PF = 0.85)
 → ToM ≅ 15 N.m/kg

Assumptions: \(p = 6 \), Distributed winding

Fig. 8. Total mass of the 500 kW motor vs the PF
3- Design of a 500 kW motor - MASS

Total mass vs Power factor:

- Mass of the passive components could be up to $2x$ time the mass of the active ones.

→ Cryostat = 24% of the total mass: **Increase the integration**

Assumptions: $p = 6$, Distributed winding

![Graph showing mass vs power factor](image)

Fig. 9. Mass decomposition of the 500 kW motor vs the PF
3- Design of a 500 kW motor - MASS

Total mass vs poles pairs:

- **Distributed winding:**
 - **Significant weight reduction** $p = 4 \rightarrow 6$: Active mass = Passive mass
 - **Less** from $p = 6 \rightarrow 8$: Active mass \ll Passive
 - Crossing end-winding increase the complexity of the manufacturing process

![Graph showing total mass of the 500 kW motor vs pole pairs](image)

Assumptions: $PF = 0.85$

Fig. 10. Total mass of the 500 kW motor vs the pole pairs
3- Design of a 500 kW motor - MASS

Total mass vs poles pairs:

- **Concentrated winding:**
 - To fit with the switching current limit: the configuration $18/12$ has the smallest difference
 - Manufacturing easier

The total mass are “comparable” for a polarity of 6 for both type of winding.

Assumptions: $PF = 0.85$

![Graph showing total mass vs pole pairs for both Concentrated and Distributed winding configurations.](image)

Fig. 10. Total mass of the 500 kW motor vs the pole pairs
3- Design of a 500 kW motor - LOSSES

Cryo. losses vs poles pairs:

- Not proportional to the pole pairs (electrical frequency)
- **Significant increase** of the cryo. losses between the distributed and concentrated winding
 - Double layer winding = +50% total slot current → Impact on Ic

Assumptions: PF = 0.85

![Normalized losses graph](image)

Fig. 12. Cryo. losses vs the poles pairs of the 500 kW motor
Cryo. losses vs Total mass:

- The cryogenic losses ↘ when the Total mass ↗ (also PF)
- The total efficiency of the motor is constant (PM eddy current + Iron losses ↗ when cryo. losses ↘)

Assumptions: $p = 6$, Distributed winding

Fig. 11. Cryo. losses vs the total mass of the 500 kW motor
3- Design of a 500 kW motor

Parameters that impact the cryo. losses:

- The number of slots:
 Impact on the total slot current and on the slot magnetic field

 Potential ↓ of 40% by doubling the number of coils in the motor.

Assumptions: $p = 6$, Distributed winding

![Graph showing cryo. losses vs the number of slots of the 500 kW motor](image)

Fig. 13. Cryo. losses vs the number of slots of the 500 kW motor
3- Design of a 500 kW motor

Parameters that impact the cryo. losses:

- **The number of slots:**
 Impact on the total slot current and on the slot magnetic field
 Potential ↓ of 40% by doubling the number of coils in the motor.

- **The width of the HTS tapes:**
 Potential ↓ of 60% with a single layer of 2 mm tape

![Fig. 13. Cryo. losses vs the number of slots of the 500 kW motor](image)
3- Design of a 500 kW motor

Parameters that impact the cryo. losses:

- **The number of slots:**
 Impact on the total slot current and on the slot magnetic field
 Potential \(\Downarrow \) of 40\% by doubling the number of coils in the motor.

- **The width of the HTS tapes:**
 Potential \(\Downarrow \) of 60\% with a single layer of 2 mm tape
 If geometry constraints (too small slot width) with the required number of tapes → double stack of 2 mm = potential \(\Downarrow \) of 50\%... But not always!

Fig. 13. Cryo. losses vs the number of slots of the 500 kW motor
3- Extrapolation to MW-class application

Extrapolation to MW-class application:
- Based on the assumptions:
 - Limit the polarity to $6 \rightarrow 500$ Hz
 - Switching current of $1800 \text{ A} \rightarrow \text{PF} = 0.85$
 - Consequent space for coils interconnexion
 - Stainless steel cryostat
 - Coils made with 4 mm width tape

 → Performances that can be obtained today

- Results:
 - X 4 on the Power = X 3 on the losses

 Today torque density = 20 N.m/kg

 …BUT +75% with 2 mm tape, 9 pole pairs, PF = 0.8 and passive component optimization
 (Ludovic’s presentation)

Fig. 14. Extrapolation to higher power
Conclusion

- A partial SC motor with SC on the stator side shows good **torque density / efficiency** if:
 - Distributed winding > Concentrated winding
 - Optimal point between the PF and the mass

- With the **TODAY** technologies, the performances at **2 MW / 5 krpm** could reach:
 - Performances of **10,5 kW/kg** & **20 N.m/kg**
 - > **99.4 %** of efficiency

- Next step to increase motor performances to be one day integrated in a aircraft:
 - Optimization of the **passive component**
 - **2 mm width tape** to reduce the AC losses in superconductors
 - Superconducting rotor ???

- This study presents one scenario of a motor at 5 krpm → Direct drive or High speed + Gear box is also investigated for the powertrain optimum (cables, power electronics, cooling system, …)