Superconducting flux modulation machines for hybrid and electric aircraft

*R. Dorget1, 2, S. Ayat1, A. Cipriani3, J. Lévêque2, J. Labbé1, T. Lubin2, M. Sitko3, J. Tanchon3, J. Lacapère3

1Safran Tech, Electrical & Electronic Systems Research group, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France

2Université de Lorraine, GREEN, F-54000 Nancy, France

3Absolut System, 2 Rue des Murailles, 38170 Seyssinet-Pariset, France
Outline

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

- Agence Nationale de la Recherche (ANR)
- Agence de l’Innovation de Défense (AID)
- Direction Générale de l’Armement (DGA)
Climate impact of aviation

Electric architectures

Turbomachinery → Electric motor

Fan

Electric generator

Power electronics → Battery

Transmission
- Mechanical
- Electrical
- Fuel

Fuel cell

LH2 → M → LH2

Turboelectric
HTS & cryogenic technologies

- High temperature superconductivity (HTS) and cryogenic technologies can increase the specific power and efficiency of the powertrain.

- Liquid hydrogen (LH2) (~20K) as auxiliary or primary fuel can overcome the main obstacle of HTS: the cooling.

Outline

• Introduction
• Flux modulation machine
• Prior works: Project RESUM
• Project FROST: Principle
• Project FROST: Design
• Project FROST: Construction
Flux modulation machine
Flux modulation machine

- 3-phases AC synchronous
- Axial flux
- Air cored
- Brushless
- Inductor flux density controllable from the HTS coil
Outline

• Introduction
• Flux modulation machine
• Prior works: Project RESUM
• Project FROST: Principle
• Project FROST: Design
• Project FROST: Construction
Project RESUM

REalisation of a SUperconducting Motor (RESUM):

• Partially superconducting 50 kW proof of concept built in summer 2019

• Rated values:
 - $\varnothing = 470$ mm
 - Length = 200 mm
 - M = 52 kg
 - $\Omega = 5000$ rpm
Project RESUM

• Inductor:
 - 1G HTS coil (BiSrCaCuO)
 - HTS disk shaped bulks (YBaCuO)
 - Working temperature : 30 K

• Armature:
 - Copper Litz wire 20 AWG
 (Ø = 0.812 mm)
 - Small back iron
Outline

• Introduction
• Flux modulation machine
• Prior works: Project RESUM
• Project FROST: Principle
• Project FROST: Design
• Project FROST: Construction
FROST: Principle

• Flux-barrier ROtating Superconducting Topology (FROST):
 ❖ Started in 2020
 ❖ Partially superconducting demonstrator

• Project philosophy:
 ❖ Change bulks shape
 ❖ Change HTS coil material (Critical current x3)
 ❖ Add liquid cooling to the armature (goal: 30 A/mm²)

→ Unviable design as it stands
Outline

• Introduction
• Flux modulation machine
• Prior works: Project RESUM
• Project FROST: Principle
• Project FROST: Design
• Project FROST: Construction
HTS bulks design

• Ring segment shaped bulks are machined from disks
 ❖ Maximum available size commercially in single domain is Ø 100 mm
 ❖ Bulk size has been reduced by 33 % because of this limit

• In 2022 : Ø 155 mm achieved by CAN [8]
Working modes

(a) Modulation and modulation

<table>
<thead>
<tr>
<th>(1) 300 K</th>
<th>(2) 30 K</th>
<th>(3) 30 K</th>
<th>Result 30 K</th>
<th>Result 30 K</th>
<th>Result 30 K</th>
<th>Result 30 K</th>
</tr>
</thead>
</table>

Coil Bulk

Applied field Bulk’s magnetisation → Coil’s current
Losses in the coil cryostat

- The coil cryostat is manufactured in aluminum
 - AC losses are generated in the cryostat wall
 - Distance between rotor and cryostat must be increased to mitigate the losses
- Coil radius increased by 35%
Eddy current losses in Litz wire

• Due to the absence of iron teeth:
 - The armature is subjected to the inductor field
 - Eddy-current losses are generated in the armature wires

• Litz wire with small strand size must be used
 - Reducing strand size mitigates the losses
 - Small strand Litz wire have a worse filling factor
 - 20 AWG \rightarrow 28 AWG
Amarature’s liquid cooling

- The limited filling factor of the Litz wire implies a low thermal conductivity (6.8 W/mK).
- The expected current density in the stator is 25 A/mm² instead of 30 A/mm².
Expected performances

Several limitations have reduced the expected performances

• Technical limitations:
 ❖ Single domain REBaCuO bulk size
 ❖ Losses in cryostat wall
 ❖ Litz wire small filling factor
 ❖ Difficulty to cool the stator

• Project issues:
 ❖ Reduced budget for the coil purchase
 ❖ Litz wire availability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RESUM</th>
<th>FROST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>5000 tr/min</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>50 kW</td>
<td>261 kW</td>
</tr>
<tr>
<td>M</td>
<td>52 kg</td>
<td>148 kg</td>
</tr>
<tr>
<td>PtM</td>
<td>1 kW/kg</td>
<td>1.8 kW/kg</td>
</tr>
<tr>
<td>η</td>
<td>94 %</td>
<td>95.3 %</td>
</tr>
<tr>
<td>Ø</td>
<td>470 mm</td>
<td>630 mm</td>
</tr>
</tbody>
</table>
Outline

• Introduction
• Flux modulation machine
• Prior works: Project RESUM
• Project FROST: Principle
• Project FROST: Design
• Project FROST: Construction
Rotor and bulks

- New cryogenic cooling for the rotor:
 - Bulks are cooled by an aluminum plate in between 2 bulks
 - The number of bulks has been doubled (5 pole pairs → 10 bulks total)
HTS coil

- Coil ordered from SHSTEC
 - 3420 m of HTS tapes
 - 38.4 kg
 - HTS tapes: 13.5 kg
 - Copper: 16.7 kg
 - G10: 6.5 kg
 - Screws & bolts: 1.7 kg
Armature

- Winding completed
 - 10 kg per armature
 - Litz wire: 2.7 kg
 - G11: 6.3 kg
 - Misc: 1 kg
Conclusion

• Full assembly of the demonstrator planned for 2023
• Rated power expected 261 kW
• Several options to further increase power:
 ❖ Bulk size available commercially is increasing
 ❖ High thermal conductivity Litz wire
 ❖ Improvement in 2G HTS wire
Thank you for your attention

✉ e-mail: remi.dorget@safrangroup.com
Comparison of working modes

Comparison of the 3 modes:

- Mode (a): applied field of 1 T
- Mode (b): applied field of 1 T
- Mode (c): applied field of 0.5 T

Three modes are equivalent except for the average value.