

HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program

Ferracin

Applied Superconductivity Conference (ASC 2024) Salt Lake City, UT Septemeber 5th, 2024

Acknowledgement

- Members US MDP 20 T hybrid magnet working group
 - BNL: M. Anerella, J. Cozzolino, R. Gupta, F. Kurian, B. Yahia
 - FNAL: G. Ambrosio, M. Baldini, E. Barzi, S. Gourlay, V. Kashikhin, V. Marinozzi, I. Novitski, G. Velev, A. Zlobin
 - LBNL: D. Arbelaez, L. Brouwer, M. D'Addazio, L. Garcia Fajardo, J.L. Rudeiros Fernandez, M. Juchno, S. Prestemon, T. Shen, R. Teyber, G. Vallone, X. Wang
 - NHMFL: K. Amm, L. Cooley, D. Larbalestier
- European Contributors
 - Emmanuele Ravaioli (CERN)
 - Douglas Martins Araujo (PSI)
 - Etienne Rochepault (CEA)

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

US Magnet development program

- US MDP, a collaboration between 4 US laboratories (BNL, FNAL, LBNL, NHMFL), was established in 2016 as a result of the 2013 P5 report
- The general goal is to perform basic R&D towards next generation high-field accelerator magnets
 - So, R&D not specifically directed towards one of the possible next accelerators, but still relevant to them
- More specifically the strategic priorities are
 - Explore the performance limits of Nb₃Sn accelerator magnets
 - Probing stress management structures
 - Perform R&D on HTS accelerator magnets
 - Develop LTS/HTS hybrid magnets
 - Investigate fundamental aspects of magnet design and technology

https://arxiv.org/abs/2011.09539

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

MDP 20 T hybrid working group

- Established in 2020 to
 - Perform a conceptual design of a 20 T hybrid HTS-LTS magnet
 - Medium-long term goal of the roadmap
 - Comparative analysis of different design options for a 20 T hybrid
 - Cos9 design and its stress-management options
 - Block-type coil design (*block with flared ends*)
 - Common-coil design (block with racetrack coils)
 - Review and follow-up of work on hybrid magnets
 - Collect and organize information to provide inputs for 20 T hybrid design and feed-backs to hybrid program
- Road-map to be updated by the end 2024 (following 2023 P5 report)

Figure 8. A high-level ten-year roadmap for the US Magnet Development Program, designed to align with the US Physics community planning process.

ENERGY Office of Science

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Office of

HTS/LTS hybrid magnets Previous work

- 2005, <u>P. McIntyre</u>, *et al.,* 24 T hybrid for LHC tripler (TAMU)
- 2011, 2014, <u>E. Todesco</u>, *et al.*, **20** T hybrid for LHC upgrade (CERN)
- 2015, <u>G. Sabbi</u>, et al., 20 T hybrid for SPPC China and FCC (LBNL)
- 2015, <u>R. Gupta</u>, et al., 20 T hybrid for LHC upgrade (BNL)
- 2016, <u>Q. Xu</u>, et al., 20 T hybrid for SPPC China (IHEP)
- 2018, J. van Nugteren, et al., 20+ T HTS for LHC upgrade or FCC (CERN)
- 2020, <u>D. Martins Araujo</u>, et al., towards 20 T FRESCA2+Feather (CERN)
- 2021, J.S. Rogers, et al., 18 T hybrid (TAMU)
- 2022, <u>P. Ferracin</u>, et al., 20 T hybrid design studies (US MDP)

HTS/LTS hybrid magnets

- The hybrid "concept": use HTS only where it is needed
 - **HTS insert**: innermost part of the coil, in high field
 - LTS outsert: outermost part of the coil, in low field
- So far, it is an economically viable option
 - To explore the very high bore fields \rightarrow 16+ T range
 - To test Nb₃Sn conductor in large bore and high field magnets
 - \rightarrow high stress
 - To test HTS in high background fields
- Relevant to...
 - FCC-hh

Office of Science

- "high-field superconducting magnets: 14-20 T"
- Muon colliders
 - Large aperture (100-160 mm), 12-16 T
 - IR quadrupole magnets (20 T)

inacs RIA or FFAG RC

HTS/LTS hybrid magnets

- In summary, from the MPD perspective, the HTS/LTS hybrid is a very effective tool
 - To perform R&D on a broad spectrum magnets similar to those considered for FCC-hh or Muon Colliders
 - To test HTS in high field
- On a side note (but still important)
 - It forces HTS and LTS teams to work together (and learn from each others) on integrated designs
 - It is a very interesting and fun problem for magnet designers and excellent case study for "workforce development"
 - It contains almost everything: different SC materials...different cable geometries...magnetics... mechanics...quench detection and protection.....

Stress managed coil designs

- In traditional cos-theta design
 - Accumulation of Lorentz forces, both azimuthally and radially, resulting in high coil stress
- In stress managed cos-theta design
 - Lorentz forces are intercepted by mechanical "stoppers", both azimuthally and radially
 - Originally proposed by P. McIntyre for block-design in 1997
- Two options consider by MDP
 - Canted Cos-theta design (CCT)
 - Each turn on a groove, separated by spars and ribs, in a tilted solenoid configuration
 - Stress management cos-theta (SMCT)
 - Traditional cos-theta with individual conductors or blocks in a groove

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Office of

Nb₃Sn wires and cables

• Strands

- Bruker-OST RRP 108/127 or 150/169
- Diameter ranging from 0.6 mm (CCT subscales) to 0.85 mm

Cables

- Rutherford cable with 11 to 51 strands
- Width from 4 mm to 22 mm
- S core (MQXF cable)
- Insulation

Office of

S2 glass braided

Bruker-OST RRP 108/127

Nb₃Sn CCT outserts

D. Arbelaez, IEEE Trans. Appl. Supercond., VOL. 32, NO. 6, Sep. 2022, 4003207.

- CCT5 (tested in 2019)
 - 2 layer with 10 mm wide cable
 - 90 mm clear bore, 1 m length
 - About 60 quenches to 90%, good memory after TC
 - B_{bore} max: **8.5 T;** B_{peak} max: 9.7 T

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Nb₃Sn CCT outserts

J. L. Rudeiros-Fernandez, et al., 4LOr2E-02

G. Vallone, et al., 5LOr2B-02

- In parallel, development of sub-scale CCT for material/training study
 - 5.5 T in 50 mm aperture, 0.7 mm length
- Very similar training as CCT5 (good!) → fast turnaround for studies
- Following BOX tests at PSI*, subscales were impregnated with:
 - Wax: CCT_sub_6
 - Alumina particle filled wax: CCT_sub_7
 - Either no or minimal training, stable plateau at I_{ss}, perfect memory, and holding current

*M. Daley, Supercond. Sci. Technol. 34 (2021) 115008

Nb₃Sn CCT outserts

• Next steps

- CCT5 with filled wax (in fabrication)
 - Targeting B_{bore} of 9.7 T (at I_{ss}), 90 mm bore, with minimal training and stable plateau
 - Conductor in higher stress than sub-scale, more representative of high field magnets
- Continue R&D with sub-scale on new impregnation materials (Telene)
- And then....CCT6: 4 layers with 21 and 18 mm wide cables
 - Design: 15 T (1.9 K, 80% I_{ss}) in 120 mm aperture

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

E. Barzi, et al., 2LOr1E-01

D. Arbelaez, *et al.*, **2LOr2E-04** J. L. Rudeiros-Fernandez. *et al.*, **4LOr2E-02**

Nb₃Sn SMCT outserts

• SMCT coils

SMCTD1 2L dipole

SMCTD1 4L dipole

- Conductor-blocks in groove
- One coil fabricated and tested in a mirror configuration

SMCT outer coils + MDPCT1 inner layer

- Target: **14-15 T** in **60 mm** aperture

- SMCTD1 4L

Office of Science

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

E. Barzi, et al., 4LOr2E-01

Nb₃Sn SMCT outserts

- SMCT coil tested in mirror SMCTM1, both with and without inner coil of the MDPCT1
- SMCTM1a
 - 14.3 kA, 87 % I_{ss} reached in 24 quenches
 - 12.7 T conductor peak field
 - Poor memory/no degradation after TC

- SMCTM1b
 - Highest current was 11.46 kA, 82 % I_{ss}
 - 14.5 T conductor peak field in the inner coil
 - 12.6 T conductor peak field in SMCT coil

U.S. DEPARTMENT OF Office of Science

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Nb₃Sn outserts Summary

in scale

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Bi2212 wires and cables

- Isotropic, multifilamentary round wire
 - Bruker-OST architecture 37×18 or 55×18
 - 50 bar overpressure heat treatment (OPHT) in Ar-O₂ or O₂ at 885-900 $^{\circ}$ C
 - $J_{e}\,^{\sim}$ 750 A/mm² at 20 T, 4.2 K
- Rutherford cable
 - Bin5
 - 4 mm wide, 9-strand, 0.8 mm strand
 - BiCCT1
 - 7.8 mm wide, 17-strand, 0.8 mm strand
 - BiCCT2
 - 12.3 mm wide, 22-strand, 1.0 mm strand
 - Insulation: combination of a TiO₂ coating with a mullite sleeve
 - To prevent electrical shorts between turns and reduce ceramic leakage
- "Renegade" furnace under commissioning at NHMFL
 - Homogeneous hot zone: 250 mm diameter, 1 m long

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Tengming Shen, et al., 3MOr1A-01

Bi2212 CCT inserts

Tengming Shen, et al., 3MOr1A-01

- Bin5
 - 1.6 T in 31 mm aperture
 - Successfully tested in stand alone
 - Ready to be tested in CCT5
- BiCCT1
 - <u>Target</u>: **5 T** in **40 mm** aperture
 - Coil wound and ready for reaction

- BiCCT2
 - <u>Target</u>: **7 T** in **40 mm** aperture
 - 12.3 mm cable with 1 mm strand fabricated

Bi2212 SMCT inserts

- Bi2212 SMCT
 - Target: 1-2 T in 15 mm aperture
 - Winding test performed with plastic parts and Nb-Ti cable
 - Fabrication of Inconel 3D printed mandrel completed
 - To be tested stand-alone and in a 4L SMCTD1

23 IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Emanuela Barzi, et al., 4LOr1B-03

Bi2212 CCT and SMCT inserts

in scale

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

REBCO wires and cables

- Conductor on Round Core CORC[®] (ATC LLC)
 - 24-30 tapes in 12 layers (2-3 tapes per layers)
 - Tape: ~2 mm wide, 30 μm thickness
 - Cu core of 2.5 mm diameter
 - Total diameter: 3.7 mm including 30 μm polyester jacket
- Symmetric Tape Round STAR[®] (*AMPeers*) wire
 - 8-12 tapes on 8-12 layers
 - Tape 1.8-2.6 mm wide, 18-30 μm thickness
 - Cu core of 0.8+ mm diameter
 - 1.7-2.5 mm total diameter

Office of

• 6-around-1 STAR[®] cable (work in progress)

Atik Chavda, et al., 4LPo1H-05

CCT CORC inserts

- The "C" series:
 - C2: first "accelerator" quality insert (CCT)
 - Successful stand-alone test in 2020
 - 2.9 T in 65 mm aperture
 - Fundamental step towards development CORC CCT inserts
 - Next step: C3
 - Target: **5 T** in **65 mm aperture**
 - Under fabrication
 - Both magnets are "stand-alone"
 - OD lager than 120 mm, due to minimum bending radius requirements

X. Wang, et al., Supercond. Sci. Technol. 34 (2021) 015012.

ENERGY Office of Science

CCT/Uni-layer CORC/STAR inserts

- Several options under study for a 90 to 120 mm OD insert
 - The "S" series (CCT with STAR wire)
 - CCT with 2 STAR wires per groove
 - Preliminary 3 turns coil fabricated and tested
 - Currently under design: S1

- CORC Round or Elliptical CCT
 - New elliptical design to reduce minimum bending radius, by a reduction of the vertical aperture
- CORC Uni-layer
 - Design to maximize field (CT cross-section) and minimize bending radius

J.L. Rudeiros Fernandez, , et al., 3LOr2B-03

COMB REBCO inserts

- The COMB (Conductor on Molded Barrel) series
 - SMCT with single conductor in groove
 - Double-layer coils with layer jump
- Fabrication and test of COMB-STAR-1
 - 1.5 T bore field reached in 60 mm bore
- Next step
 - Fabrication of COMB-STAR-2 and COMB-CORC-1
 - Targeting **5 T** in **60 mm bore**

Bi2212 and REBCO outserts

Summary

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

in scale

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Office of

Summary of inserts and outserts

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Hybrid Bin5-CCT5

- Work ongoing to combine CCT5 with Bin5 in hybrid configuration
 - Lesson learned: not simple insertion, but rather an integrated design
- Test expected by end of 2024: first hybrid magnet at 10 T field level
 Relatively "low field", but very important milestone towards higher field
- Upgrade of the LBNL test facility for hybrid testing: commissioning completed
 - Challenge: two independent facilities (PS, quench protection, header) in one facility

R. Teyber, , et al., 5LOr2D-02

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Office of

Towards 20 T hybrid magnet Overview

- Three options considered (Cos-Theta, Block, Common-coil), all with a Bi2212 insert
- Iterative process: magnetic, mechanical, and QP analysis
- More focus on Cos-theta: MDP inserts and outserts current design
- ...and on common coils

Office of

R. Gupta and D. Martins Araujo, et al., 4LOr2B-02

- Only preliminary design with block
- Quench protection of the 3 designs carried out

Emmanuele Ravaioli, , et al., 4LOr1B-06

- Quench protection ok for 1+ m long magnet, for the 10-15 m length new solutions to be considered

Towards 20 T hybrid magnet Cos-theta option

- Magnetic:
 - 2 layer HTS, 4 layer LTS, field quality and margin in spec, OR coil: 165 mm
- Mechanics:
 - Stress management required in all directions
 - First 2 layers (HTS) with single cable in grove, second 2 layers (LTS) with single block in grove, last 2 layers traditional CT
 - Coil stress acceptable, but very high stress in the mandrel (Inconel or Nitronic?)
 - Large mechanical structure: 1120 mm.
 - Pre-load provided by bladder and key support structure to reduce peak field in conductor.

Marika DAddazio, , et al., 4LOr2B-03

Outline

- Introduction and motivations
 - US Magnet Development Program and the 20 T hybrid magnet working group
 - Why hybrid magnets and why stress managed coils
- Overview of hybrid activities
 - Nb₃Sn outserts
 - HTS inserts
 - Bi2212
 - REBCO
 - First hybrid magnet
- Towards a 20 T hybrid magnet
- Conclusions

Conclusions

- US MDP pursuing an LTS-HTS hybrids magnets
 - Excellent tool to perform R&D on various HTS magnets, Nb₃Sn magnets
 - All relevant to future colliders
- Large aperture Nb₃Sn outserts under development with stress management concepts
 - CCT: "5" is ready, "6" under develop.,
 - SMCT first coil successfully tested in mirror configuration
- HTS inserts
 - First Bi2212 CCT coil Bin5 ready to be tested in hybrid; others to come
 - Both REBCO CCT and COMB insert designs validated with CORC[®] and STAR[®] wires
- First hybrid test (9-11 T field level) expected in 2024
- 20 T design study
 - Stress management required in particular in the innermost layers
 - Up to 3-4 m length can be protected, beyond new solutions required
 - Large coils, large magnets...overall challenging, but no showstoppers

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Towards 20 T hybrid magnet Cos-theta magnetics and quench protection

- Coil inner diameter 60 mm
 - Internal support structure
- Design constraint: double-layer coils
- 6 layers, with cables 15 to 22 mm wide
 2 layer HTS, 4 layer LTS
- HTS: CCT-like or "single turn" SMCT
- LTS: SMCT design + CT
- Field quality and margin in spec
- j_e= 450-600 A/mm², j_o= 300-400 A/mm²
- OR coil: 165 mm

Office of

- 1 m long magnet protectable with CLIC only
 - Peak temperature 270 C

Emmanuele Ravaioli, et al., 4LOr1B-06

Current reference cross-sections Cos-theta mechanics

- 4 out of 6 layers with stress management
 - Result of several iterations
- First two layers (HTS) with single cable in grove, ribs and spar
- Second two layers (LTS) with single block in grov with ribs and spar
- Last two layers traditional CT
- Coil stress acceptable, but very high stress in the mandrel (Inconel or Nitronic?)

2 Turns

TION

ANGVG 2022 D2

Test 1

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Bi2212 and REBCO outserts Summary

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

U.S. DEPARTMENT OF Office of Science

in scale

CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF SCIENCE

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Design criteria

- Coil and magnet parameters
 - Free coil aperture (diameter)
 - Operational bore field
 - load-line fraction @ $1.9K: I_{op}/I_{ss}$
 - 2D Geometrical harmonics
- Quench protection
 - All coils powered in series
 - Maximum hot spot temperature
- Mechanics
 - Maximum Nb₃Sn coil stress
 - For the HTS

50 mm 20 T <= 87 % b_n<3 units for n<10 (at R_{ref}=17 mm)

350 K

<180 (<150) MPa at 1.9 (293) K <120 MPa

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"

Superconducting materials: *J_e* and *J_o*

- Assumptions for magnetic analysis
 - $-J_e$ = Strand current / strand area
 - J_{e_LTS} = 875 A/mm² (1.9 K, 16 T, 5% degrad.)
 3000 A/mm² J_c (4.2 K, 12 T, virgin)
 - $J_{e_{HTS}} = 740 \text{ A/mm}^2 (20 \text{ T})$
 - Bi2212 value

Office of

- Nb₃Sn and HTS cross at 16.5 T
- CORC/STAR wire still lower in J_e (600 A/mm², 20 T)

Overview of planned MDP hybrid magnets

Motivations of a 20 T hybrid design

- ...also....the "4 T step"
 - 8 T
 - Nb-Ti "limit" (LHC)
 - 12 T
 - Nb₃Sn (HL-LHC)
 - 16 T
 - Limits of Nb₃Sn
 - 20 T
 - HTS

P. Ferracin, "Development of HTS/LTS Hybrid Dipole Magnets by the US Magnet Development Program"