ISS 2023, Wellington, November 28-30, 2023

AP-6-4-INV

Development of Superconducting Cable with Energy

Society of Renewable Energy

Storage Function for Mass Utilization

Kohei Higashikawa^{1,2}, Zeyu Wu², Takanobu Kiss^{1,2}

¹Research Institute of Superconductor Science and Systems, ²Gradate School and Faculty of ISEE, Kyushu University

This work was supported by the New Energy and Industrial Technology [

the New Energy and Industrial Technology Development Organization (NEDO), JSPS KAKENHI Grant Number JP20H02132.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

KYUSHU UNIVERSITY

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

Background: Necessity of Power Fluctuation Compensation

Large-scale utilization of renewable energies is a key issue for sustainable society.

Power fluctuation compensation is one of the most critical issues.

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Background: Limitation of SMES

My Ph.D. thesis was on the design of HTS SMES...

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Background: Limitation of SMES

My Ph.D. thesis was on the design of HTS SMES...

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Background: Limitation of SMES

My Ph.D. thesis was on the design of HTS SMES...

Fig. 7. Overview of the 100 MVA/2 GJ class YBCO SMES system for load fluctuation compensation.

K. Shikimachi, et al., fluctuation IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009

Limitation to Larger Scale

Superconducting Magnetic Energy Storage (SMES) Cable

Magnetic energy storage by large inductance and large current: $W = \frac{1}{2} L I^2$

Overcome the disadvantage of low energy density of SMES by using large volume of the superconducting cable

Proposal

Power System with Energy Storage Function by **DC Superconducting Cable** for Power Fluctuation Compensation of Renewable Energies

Advantages:

- (i) high-speed & high-power & highly-efficient operation
- (ii) no additional space for energy storage (iii) scalability
- (iv) DC operation suitable for superconducting cable and for recent loads ...

Typical Scale of a Micro Grid: ~10 MW, ~10 km

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Stored Energy for 10-km-long Cable

Stored Energy:

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

15

5T

60

 θ (deg)

90

120

10

30

Requirement of 10 kA Conductor

Power capacity of the micro-grid: $10 MW = 1 kV \times 10 kA$

Cross-section of 10-kA conductor:

GdBCO+BHO CC

pure GdBCO CC

B//c

/_c (A/cm-w)

1000

100

10

Design Example for Coated Conductor @ 2012

Design Example for Recent Thinner Coated Conductor

Design Examples of SMES Cables

Stored energy <i>W</i>	Magnetic field <i>B</i>	Winding diameter <i>d</i>	Turns @1m <i>n</i>	Conductor length @1m	Inductance @1m	Cross-sectional area of the conductor (with recent thin CC) <i>a</i>	Functions
10 MJ	0.5 T 0.3 T	120 mm 200 mm	40 24	15 m	20 uH	4 mm ² @ 65 K 13 mm ² @ 77 K 3 mm ² @ 65 K	Response compensation for storage batteries and fuel cells
	1 15 T	105 mm	01			11 mm² @ / / K	(orders of seconds)
40 IVIJ	1.151	105 1111	91	30 11		5 mm ² 00 K	Deenenenenentien
	5 T	120 mm	400			5 mm² @ 20 K (by stress constraints) 13 mm² @ 65 K	for gas turbine including shutdown and
1 GJ	3.5 T	200 mm	240	150 m	2 mH	6 mm ² @ 20 K (by stress constraints) 7 mm ² @ 65 K	for thermally efficient use of fuel cells (orders of minutes)
	20 T	300 mm	1600			50 mm ² @ 20 K (by stress constraints)	
100 GJ	8.5 T	700 mm	680	1.5 km	0.2 H	50 mm ² @ 20 K (by stress constraints) 50 mm ² @ 65 K (by stress constraints)	Daily load leveling (orders of hours)

Design Examples of SMES Cables

Stored energy <i>W</i>	Magnetic field <i>B</i>	Winding diameter <i>d</i>	Turns @1m <i>n</i>	Conductor length @1m	Inductance @1m	Cross-sectional area of the conductor (with recent thin CC) <i>a</i>	Functions
10 MJ	0.5 T	120 mm	40	15 m	20 uH	4 mm ² @ 65 K 13 mm ² @ 77 K 3 mm ² @ 65 K	Response compensation for storage batteries
				00		<u>11 mm² @ 77 K</u>	(orders of seconds)
40 MJ	1.15 1	105 mm	91	30 m	80 uH	5 mm² @ 65 K	· · · · · · · · · · · · · · · · · · ·
	5 T	120 mm	400	450		5 mm ² @ 20 K (by stress constraints) 13 mm ² @ 65 K	Response compensation for gas turbine including shutdown and
1 GJ	3.5 T	200 mm	240	150 m	2 mH	6 mm ² @ 20 K (by stress constraints) 7 mm ² @ 65 K	for thermally efficient use of fuel cells (orders of minutes)
	20 T	300 mm	1600			50 mm ² @ 20 K (by stress constraints)	
100 GJ	8.5 T	700 mm	680	1.5 km	0.2 H	50 mm ² @ 20 K (by stress constraints) 50 mm ² @ 65 K (by stress constraints)	Daily load leveling (orders of hours)

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Small Model Cable for 40 MJ SMES Cable

High temperature superconducting tape: REBCO coated conductor

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Small Model Cable for 40 MJ SMES Cable

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Small Model Cable for 40 MJ SMES Cable

Hardware in the loop Simulation (HILS) for 40-MJ SMES Cable

Scaling in Hardware-in-the-loop Simulation (HILS)

Results obtained by HLS (Discharge)

KYUSHU UNIVERSITY

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Results obtained by HILS (Charge)

W KYUSHU UNIVERSITY

ISS 2023 (K. Higashikawa (Kyushu Univ.))

Design Examples of SMES Cables

Stored energy <i>W</i>	Magnetic field <i>B</i>	Winding diameter <i>d</i>	Turns @1m <i>n</i>	Conductor length @1m	Inductance @1m	Cross-sectional area of the conductor (with recent thin CC) <i>a</i>	Functions			
10 MJ	0.5 T	120 mm	40	15 m	20 uH	4 mm ² @ 65 K 13 mm ² @ 77 K 3 mm ² @ 65 K	Response compensation for storage batteries			
	0.3 T	200 mm	24			11 mm ² @ 77 K	and fuel cells			
40 MJ	1.15 T	105 mm	91	30 m	80 uH	(orders of seconds)				
	5 T	120 mm	400			5 mm ² @ 20 K (by stress constraints) 13 mm ² @ 65 K	Response compensation for gas turbine including shutdown and			
1 GJ	3.5 T	200 mm	240	150 m	2 mH	6 mm ² @ 20 K (by stress constraints) 7 mm ² @ 65 K	for thermally efficient use of fuel cells (orders of minutes)			
	20 T	300 mm	1600			50 mm ² @ 20 K (by stress constraints)				
100 GJ	8.5 T	700 mm	680	1.5 km	0.2 H	50 mm ² @ 20 K (by stress constraints) 50 mm ² @ 65 K (by stress constraints)	Daily load leveling (orders of hours)			

Hardware in the loop Simulation (HILS) for 1-GJ SMES Cable

Hardware in the loop Simulation (HILS) for 1-GJ SMES Cable

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Obstained by HILS (Charge-Discharge)

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand Winding Test with High-current Conductor

Small Model Cable by Single Tape (RE-123 CC, cross-section: ~0.6 mm² (4 mm x 0.15 mm))

1 m, 400 turns

Winding test with high-current conductor (CORC[®], cross-section: 7.74 mm² (diameter: 3.14 mm))

Specification:

Bundle of 12 tapes (2 mm wide, 30 um thick)

Nominal *I*_c : 670 A @ 77K Expected *I*_c : 500-600 A

(~10 kA @ 20 K)

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

Winding Test with High-current Conductor

Winding with high-current conductors will be applicable

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Telefort of SMES Cable on Microgrid (without SMES Cable)

→ Need to convert energy into hydrogen in advance, and efficiency until it is converted back into electrical energy is an issue.

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

eliminate the problem of instantaneous mismatch between supply and demand.

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPErconductivity News FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

KYUSHU UNIVERSITY

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

storage batteries may no longer be needed.

Summary

Solves the problem of fluctuating renewable energy output and further maximizes energy utilization Almost zero additional losses for energy storage because it also transports electricity!

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

						"Byen" means billion (Japanese) yen. The costs are estimated both from present unit cost of energy and from future one, and are listed above and below in each cell, respectively. The battery is assumed to be replaced twice every 30 years due to its lifetime.								
Case	PV	hydrogen	battery	SMES cable	supply- demand balancing	energy utilization efficiency (cloudy day)	energy utilization efficiency (clear sometimes cloudy day)	energy utilization efficiency (clear day)	annual average efficiency	electricity directly suppled by PV for 30 years	electricity supply by hydrogen for 30 years	energy cost for 30 years: present, future	Allowable cost for installing SMES cable: present, future	
Case O	10 MW	10 MW	-	-	NG	-	-	-	-	-	-	-	-	
Case B	10 MW	10 MW	10 MW	-	NG	-	-	-	-	-	-	-	-	
Case H	-	10 MW	-	-	ОК	30%	30%	30%	30%	-	1.75 TWh	175 Byen, 53 Byen	-	
Case SB	10 MW	10 MW	10 MW	60 MJ	ОК	32%	37%	43%	38%	0.52 TWh	1.24 TWh	134 Byen, 42 Byen	38 Byen, 8 Byen	
Case S	10 MW	10 MW	-	500 MJ	ОК	32%	38%	43%	38%	0.52 TWh	1.23 TWh	133 Byen, 42 Byen	42 Byen, 11 Byen	
Case S15	15 MW	10 MW	-	750 MJ	ОК	34%	41%	46%	41%	0.68 TWh	1.07 TWh	121 Byen, 38 Byen	54 Byen, 15 Byen	
Case S19	19 MW	10 MW	-	1 GJ	ОК	35%	43%	48%	43%	0.77 TWh	0.98 TWh	113 Byen, 37 Byen	62 Byen, 16 Byen	
Case SB19	19 MW	10 MW	10 MW	120 MJ	ОК	35%	43%	48%	43%	0.77 TWh	0.99 TWh	114 Byen, 37 Byen	58 Byen, 13 Byen	

EEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, March, 2024. Presentation given at ISS 2023, Nov. 2023, Wellington, New Zealand

H12						"Byen" me and from f to be repla	"Byen" means billion (Japanese) yen. The costs are estimated both from present unit cost of energy and from future one, and are listed above and below in each cell, respectively. The battery is assumed to be replaced twice every 30 years due to its lifetime.							
Case	PV	hydrogen	battery	SMES cable	supply- demand balancing	energy utilization efficiency (cloudy day)	energy utilization efficiency (clear sometimes cloudy day)	energy utilization efficiency (clear day)	annual average efficiency	electricity directly suppled by PV for 30 years	electricity supply by hydrogen for 30 years	energy cost for 30 years: present, future	Allowable cost for installing SMES cable: present, future	
Case O	10 MW	10 MW	-	-	NG	-	-	-	-	-	-	-	-	
Case B	10 MW	10 MW	10 MW	-	NG	-	-	-	-	-	-	-	-	
Case H	-	10 MW	-	-	ОК	30%	30%	30%	30%	-	1.75 TWh	175 Byen, 53 Byen	-	
Case SB	10 MW	10 MW	10 MW	60 MJ	ОК	32%	37%	43%	38%	0.52 TWh	1.24 TWh	134 Byen, 42 Byen	38 Byen, 8 Byen	

Stored energy:	60 MJ
Magnetic field:	1.5 T
Cable diameter:	100 mm
Turn number per unit length:	120 turns
Length of conductor per unit length:	37.7 m/m
Bundle of 4-mm-wide CC	38 tapes / 10 kA at 65 K
Total amount of 4-mm-wide CC	14326 km / 10 km cable

Permissible price of 4-mm-wide CC

- ~20 USD / m (2652 yen / m) for present of green hydrogen
- ~4 USD / m (558 yen / m) for future cost of green hydrogen

A novel power system with energy storage function by superconducting cable was proposed, designed, and demonstrated

Advantages:

(i) high-speed & high-power operation

(ii) no additional space for energy storage (iii) scalability

(iv) DC operation suitable for superconducting cable and for recent loads

(v) overcoming the disadvantage of small energy capacity of SMES

This technology will offer high-power and high-speed power compensation necessary for future large-scale utilization of renewable energies especially for PV power generation.

This work was mainly supported by NEDO Feasibility Study Program (Uncharted Territory Challenge 2050) with one of the largest budget for young researcher: ~100 million (Japanese) yen.

Summary

Newly proposed special superconducting cables and their innovative operation will give the power grid energy storage, charge and discharge functions

 \rightarrow A decisive factor for the mass introduction of renewable energy!

