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Superconductor electronic logic family metrics and comparisons

Logic families are key to the future of digital superconductor electronics (SCE). Predicting the utility 
and cost of a given logic family for computing is challenging because logic families must satisfy 
various functional requirements, operational requirements, and technical requirements. However, 
common metrics such as throughput, power, area, and yield do not cover the full range of 
requirements. In this work, we first analyze the shortcomings of common figures of merit, and 
second, we establish a methodology and set of benchmarks tailored to SCE's target application 
domains. Lastly, we survey the most prominent superconductor logic families and perform both 
qualitative and quantitative analysis, where possible.

Presenter: D. Scott Holmes
European Conference on Applied Superconductivity

2023 September 3–7, Bologna, Italy
https://eucas2023.esas.org/
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2022 IRDS CEQIP summary
• Coverage

• Superconductor Electronics (SCE)
• Cryogenic Semiconductor Electronics
• Quantum Information Processing (QIP)

• Key Messages from the 2022 report
• SCE: Partial roadmaps
• QC: Not yet ready for roadmaps

• Summary slides:
• Difficult Challenges
• Technology Requirements
• Potential Solutions

• Updates
• New Technology Requirements
• Breakthroughs in Technology, Research
• New Disruptors
• Potential Solutions

• Conclusions and Recommendations
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Available:
https://irds.ieee.org/editions
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Superconductor Digital Logic Families
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2022 Summary of current status

Name SF
Q

Power
Static 
Power

Dynamic power 
per switch

Trans-
formers

Clocked 
Gates

JJ count
log10(n)

RSFQ: rapid single flux quantum 1 − DC High α IcΦ0 f - Yes 4.4
LR-RSFQ: inductor-resistor RSFQ 1 − DC Low α IcΦ0 f - Yes 1.6
LV-RSFQ: low-voltage RSFQ 1 − DC Low α IcΦ0 f - Yes 3.7
ERSFQ: energy-efficient RSFQ 1 − DC 0 * IbΦ0 f - Yes 3.8
eSFQ: efficient SFQ 1 − DC 0 * IbΦ0 f - Yes 3.4
Clockless SFQ 1 − DC 2.8
DSFQ: dynamic SFQ 1 − DC ‡ ‡ - Some 0.7
TSFQ: temporal SFQ 1 − DC - No (2.8)
xSFQ: alternating SFQ 2 − DC ‡ ‡ - No
nTron: nanowire cryotron 1 − DC ~0 varies - Yes 1.5
hTron: heater-cryotron nanowire 1 − DC ~0 varies - Yes 1.2
HFQ: half flux quantum 0.5 − DC Low - Yes 1.2
SFQ-AC: AC-powered SFQ 1 ~ AC ‡ ‡ P Yes 5.9
RQL: reciprocal quantum logic 2 ~ AC ~0 α IcΦ0 f 2/3 P, G Some 4.9
PML: phase mode logic 1 ~ AC ~0 α IcΦ0 f /3 P, G Some
AQFP: adiabatic quantum flux parametron - ~ AC ~0 α IcΦ0 2 f τsw /τx P, G Yes 4.3
RQFP: reversible QFP - ~ AC ~0 α IcΦ0 2 f τsw /τx P, G Yes 1.4

2022 Table CEQIP-4
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Superconducting QC Roadmap
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Metric 2020 2022 2024 2026 2028 2030 2032

Qubit growth per year 2× 2× 2× 2× 2× 2× 2×

Qubit count 5.5e+1 2.2e+2 8.8e+2 3.5e+3 1.4e+4 5.6e+4 2.2e+5

Qubit type Transmon Transmon Transmon Transmon ? ? ?

Qubit lifetime T1, med. [ms] 0.5 10

2 qubit gate error rate, 
median (p_2Q)

1.0e-2 1.0e-4

Gate depth (1/p_2Q) 1.0e+2 1.0e+4

Error correction code Surface Surface Surface Surface Surface Surface ?

Phys. qubits per logical qubit 1800 1800 1568 1568

Logical qubit count 1 7 35 140

Logical qubit error rate 1.0e-15

Control type, temp. [K] CMOS, 300 CMOS, 300 CMOS, 300 CMOS, 4 CMOS, 4 CMOS, 4 SCE, 4

SCE control complexity [JJ] 1.1e+5 4.5e+5 1.8e+6 7.2e+6 2.9e+7 1.2e+8 4.6e+8
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Searching for a winning combination

1960s
ECL
DTL
TTL
NMOS
PMOS
CMOS
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Semiconductor logic families
1980s
ECL
DTL
TTL
NMOS
PMOS
CMOS

en.wikipedia.org/wiki/CMOS

Considerations:
• Performance
• Power (Static, Dynamic)
• Supply current
• Cost

o Design
o Area
o Fabrication
o Yield
o Packaging

• ...

PMOS

NMOS

▸ What are the key metrics and limits?

Superconductor logic families
2030s2010s

– RSFQ
– ERSFQ
– eSFQ
– nTron
– DSFQ
– HFQ
– xSFQ
– FPL
~ SFQ-AC
~ RQL
~ PML
~ PCL
~ AQFP
~ DQFP
~ RQFP
~ SSBF
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[1]  G. Tzimpragos et al., “Architectural Modeling and Analysis of Superconducting Logic Families,” presentation 1EOr2B-06 at the Applied Superconductivity Conference, Honolulu, HI, USA, 2022-10-24.

CMOS graphic source: https://en.wikipedia.org/wiki/CMOS
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Key Metrics and Limits for SCE logic
1. Power dissipation (static + dynamic)
2. Current supply
3. Area and scalability (problems: transformers, path balancing)
4. Variation sensitivity (process, magnetic field, supply current, trapped flux)
5. Memory (using logic process)
6. Architectural

1. Composability
2. Logic depth per clock cycle
3. Time usage
4. Performance

7. Cost
1. Design
2. Fabrication (includes area, yield, packaging)
3. Testing
4. Shielding
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2. Power dissipation

Limits:
1. 100 mW/cm2 in LHe

2. 10 mW/cm2 on cold head

Best practice for power distribution:
1. No resistors
2. No switching junctions
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(static + dynamic)
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2. Current Supply

Uses:
1. Junction biasing (waste!)

2. Makeup energy (necessary)

Best practice:
1. AC to SFQ
2. AC
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Best practice is to supply AC power to the chip. As we shall see, coupling the AC power to subcircuits through transformers or capacitors allows distribution to many subcircuits in series with the same small current. This contrasts with DC power distribution in traditional SFQ circuits in which the currents are in parallel and the sum of all currents must be supplied to the chip.

[1]  G. Krylov and E. G. Friedman, “Partitioning RSFQ circuits for current recycling,” IEEE Trans. Appl. Supercond., vol. 31, no. 5, p. 1301706, Aug. 2021, doi: 10.1109/TASC.2021.3065287.
"Supplied from off-chip, these currents also require a large number of input pins. As each input has a current limit of 200 to 300 mA, the total number of inputs required to supply the bias system can exceed hundreds. In addition, the bias current is distributed on-chip though thin superconductive lines, which are necessarily wide to support these high currents, expending limited metal resources. Furthermore, the high currents produce large magnetic fields which can couple to sensitive RSFQ gates, introducing errors. It is therefore imperative to reduce on-chip bias currents within complex RSFQ circuits."

[2]  S. K. Tolpygo, “Superconductor digital electronics: Scalability and energy efficiency issues,” Low Temp. Phys., vol. 42, no. 5, pp. 361–379, May 2016, doi: 10.1063/1.4948618.
"The maximum current which has successfully been delivered to the largest operational RSFQ circuit is ~3 A [69], with a substantial margin degradation of some of its subcircuits."
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DC Supply Current to Bias JJs

• IC ≈ 100 μA (constraints: thermal noise, switching
energy)

• K0 ≈ 0.7 (bias current ratio, K0 ≡ i/IC)
• 𝛼𝛼 ≈ 0.5 (fraction of biased junctions)

• Bias current for 1 million junctions in parallel?

Ib = N IC K0 𝛼𝛼 = (1e+6)(100e-6)(0.7)(0.5) = 35 A

• Way too much current and not nearly enough
junctions!
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Biasing sets signal flow direction 

▸ Traditional DC biasing will not scale.

Ic
Ibias

ϕ0 π 2π

𝑖𝑖 = 𝐼𝐼𝑐𝑐 sin 𝜙𝜙

Lt Lt

Rb

Lt

ib

Lt

Rs2

Junction bias in RSFQ

Rs1 J1 J2

ib2ib1

Vb≈ 2.6 mV
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To see the problem  with DC current supply for bias currents, assume an average critical current of I_c = 100 μA, a bias current ratio K_0 = 0.7, and a fraction of biased junctions a = 0.5. The DC bias for such a circuit with 1 million JJs would be expected to require roughly 35 A. Such a current would be very difficult to supply without exceeding the critical currents of the thin film interconnects and without creating magnetic fields that interfere with operation. And we will need far more than 1 million JJs to meet future application needs.

The conclusion is that traditional DC biasing will not scale!
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Supply Current: Recycling

• Pass DC bias current through a series of
N ground plane ‘islands’

• N = 16 demonstrated with highly regular
circuits (shift registers) [1]

• Advantages
• N× bias current reduction

• Disadvantages
• Clock, data nets also require separation
• Area multiplier ≈ 1.5× (??)
• JJ return current paths can affect margins
• Complexity of balancing island currents
• Capacitive coupling between floating

islands
• Ground plane gap shields needed
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DC bias current

Fig. 2. Driver-receiver 
pair (DRP) to transfer 
clock and data pulses 
between islands. [2] 

▸ Seems difficult with limited benefits

Fig. 1. Grapevine 
distribution of DC 
bias currents. [2] 

[1] Semenov+, “Current recycling: New results,” 2019,
doi: 10.1109/TASC.2019.2904961

[2] Shukla+, “Serial biasing technique for electronic design automation
in RSFQ circuits,” 2022, doi: 10.1109/TASC.2022.3214767

(PTL)(PTL)
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Supply Current: AC/SFQ Conversion

• Better: Convert AC to SFQ (not DC) on
chip using rectifiers

• Best used with logic cells that require
AC or no bias current

• Advantages
• AC supply to converters in series, so can

supply more cells (≈ 1000× ?)

• Disadvantages
• Complexity, area overhead factor ≈ 2× (?)
• Transformers don’t scale well
• fAC > fclock for best energy efficiency
• Need to design more logic cells that use

AC or no bias current
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[1] Semenov+, 2021, doi: 10.1109/TASC.2021.3067231

Fig. 3a. AC/SFQ converter supplying a JTL. [1] 

𝜑𝜑e 𝜑𝜑e

▸ Deserves further investigation
▸ EUCAS 2023 Sep 7, 4-ES-SL-01, Mukhanov
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References: 
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[2]  O. Mukhanov, “Matching Superconducting Digital Circuits and Qubits in Quantum Computers,” invited oral presentation 4-ES-SL-01I at the European Conference on Applied Superconductivity (EUCAS), Bologna, Italy, 2023-09-07.
[3]  F. V. Lupo, “Smart Biasing for Energy-Efficient SFQ logic,” oral presentation 4-ES-SL-03S at the European Conference on Applied Superconductivity (EUCAS), Bologna, Italy, 2023-09-07.
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AC Power Distribution

• Local storage of power and clock signal in high-Q
LC-resonators

• 1 resonator per tile

• 2D mesh of LC resonators has a zero-order mode
• Clock signal distribution over large area with only small

amplitude and phase variation

• 30 GHz design with 400 M taps/cm2
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Design concept for large-scale clock distribution

Local  Clock 
Distribution
(2D mesh)

1 Tile

Global  Clock Distribution
(microwave impedance transformation network) 

External 
source

A. Herr +, “Scaling NbTiN-based ac-powered Josephson
digital to 400M devices/cm2,” 2023, arXiv.2303.16792
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AC Power Scaling

• Transformers [1]

• Current required for JJ biasing does not scale
• Wire size limited by wire JC

• Voltage also increases due to kinetic inductance at small sizes

• Capacitors [2]

• Current required for JJ biasing does not scale
• But current is the same on both sides
• Current increases with frequency
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Transformers or capacitors?

𝑖𝑖1 ∝
𝑖𝑖𝐽𝐽
𝑀𝑀

𝑉𝑉1 = 𝐿𝐿
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑

∝ 𝐿𝐿1𝑀𝑀 + 𝐿𝐿1𝐾𝐾 𝑓𝑓𝑖𝑖𝐽𝐽

L1 = L1M + L1K
~ i1

L2 = L2M + L2K

Transformer bias supply

Rs J

~ iJ

M = 𝜅𝜅(L1ML2M)1/2

𝐼𝐼𝐽𝐽 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ∝ 𝐶𝐶𝐶𝐶𝑉𝑉1C

Capacitor bias supply

Rs J

~ iJ

~ iJ

~ V1

[1] S. Tolpygo, 2023, doi: 10.1109/TASC.2022.3230373

[2] A. Herr +, 2023, arXiv.2303.16792
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3. Area and Scalability

Checks:
1. Inductors
2. Transformers
3. Passive transmission line (PTL) width
4. Josephson junctions

1. Size and scalabilty
2. Types (0-JJ, pi-JJ, phi-JJ)
3. Self-shunted
4. Unshunted

Best practices:
1. Mix of JTLs, PTLs
2. No shunt resistors
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Passive transmission lines (PTL)

• PTL width (~ 4 µm) is a major
obstacle to scaling

• JJs are low impedance drivers
• Reducing the PTL width increases

impedance, which causes reflections
due to impedance mismatch

• Reducing JJ Ic increases impedance,
but reduces pulse energy

• Using only PTLs for routing
requires too much area

• Additional PTL layers would
increase area density but require
+2 metal layers each

16

Important interconnects

AMD2901 4-bit processor design with 16,840 gates 
(upper left portion of overall layout)

Placed and routed in Synopsys Fusion Compiler (FC) 
and viewed in Custom Compiler 

Logic gate

PTL cross section

Herbst +, 2020, doi: 10.1109/TASC.2020.3006988
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Reference:
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4. Variation sensitivity

Checks:
1. Process

2. Supply current or power
3. Trapped flux, Magnetic field

Best practices:
1. No need to match multiple devices (e.g. JJ and inductors)
2. No inductors or transformers
3. Phase shift devices (?)

4. Logic tolerant of variations (?)
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Phase Engineering: 𝜑𝜑 Junctions

• Storing element compaction [1]

• Question:
• Can the devices be made?
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One Junction to rule them all?

[1] I. I. Soloviev, “Superconducting circuits without
inductors based on bistable Josephson junctions,”
2021, doi: 10.1103/PhysRevApplied.16.014052

Fig. 2

Fig. 1
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Josephson junctions made from superconductor with a thin insulating barrier have a current-phase relation (CPR) and energy-phase relation (EPR) as shown in Fig. 2(a). The junction has a minimum energy at zero phase and current, so a current is required to bias the junction in a particular direction. These junctions are also called 0-JJs.

Pi-JJs with a magnetic barrier layer have a CPR and EPR shown in Fig. 2(b). Note that the minimum energy occurs at a phase of + or - pi. A pi-JJ and a 0-JJ in a superconducting loop as shown in Fig. 1(c) will have a ground state with a non-zero current circulating in one direction or the other.

Other possibilities include 0-pi or phi JJs with CPRs and EPRs shown in Fig. 2(c) and (d). While phi-JJs seem particularly useful, they have proven difficult to fabricate. Needed are devices with a good combination of fabricability and functionality.
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“Inductorless” circuits with small mutual inductances

• Junction types
• 0 junctions (SIS), switching
• 0 junction stacks (SNsNsNS)
• π junctions (SFS)
• φ junctions  [1], [3]

• Questions:
• Can the devices be made?
• And with sufficiently small

parameter variations (Ic, L)?
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Non-traditional Josephson junctions to replace inductors, reduce JJ count

[1] Soloviev +, “Superconducting circuits without inductors based on bistable Josephson junctions,” 2021, doi: 10.1103/PhysRevApplied.16.014052.
[2] Maksimovskaya +, “Phase logic based on π Josephson junctions,” 2022, doi: 10.1134/S0021364022600884.
[3] Bakurskiy +, “Compact Josephson φ-junctions,” 2018, doi: 10.1007/978-3-319-90481-8_3.

[1] (a) JTL with inductors, (b) JTL with magnetic junctions

(a) (b)
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5. Memory

Metrics:
1. Capacity
2. Density
3. Time for read/write
4. Energy for read/write

Best practices:
1. (?)
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Best practices are unclear as we do not presently know how to make memories scalable to more than a few kibibits (Kibit).

An example of how a logic family might support memory implementation is the recently proposed racetrack memory that uses temporal logic in the memory controller [1].

[1]  J. Volk, A. Wynn, E. Golden, T. Sherwood, and G. Tzimpragos, “Addressable superconductor integrated circuit memory from delay lines,” Sci. Rep., vol. 13, no. 1, Art. no. 16639, Oct. 2023, doi: 10.1038/s41598-023-43205-8.
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6. Architectural

Metrics:
1. Logic depth per clock cycle
2. Time usage (?)
3. Performance (alone or per unit area, power, energy, or cost)
4. Composability

Best practices:
1. AC clocking
2. Clock reduction or elimination

1. Macro blocks or cell-abutment logic
2. Self-timed or asynchronous

3. Efficient data representation
4. Neuromorphic circuits (?)
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Goal: Add metrics for architectural properties

Application

Algorithm

Program

Operating system

Architecture

Digital logic

Circuits

Devices

Technology

Software

Hardware

Interface

Levels of abstraction

μarchitectural 
constraints
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Performance measures logic operations per unit time and seems to be a better overall metric that covers time usage. Combined performance metrics can be created by dividing by resources such as area, power, energy, or cost.
Composability refers to the ability for different components to be combined or connected in various ways to create larger, more complex logical constructs. Metrics for composability are under study.

Best practices include 
AC clocking as it does not require separate distribution of clock pulses. 
Reducing or eliminating the need for clocking is possible with some logic families. 
Data representations can be binary (with 1 or more fluxons representing a ‘1’), unary, or temporal. The most efficient data representation can vary by application.
Neuromorphic circuits seem promising but are yet unproven in usefulness.
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AC Clocking

• AQFP (most established)
• Advantages: JJs are all the same size and small (50 μA),

energy efficient, good margins, majority logic
• Disadvantages: large area, transformers, clocked gates,

memory (?), majority logic

• Reciprocal quantum logic (RQL)
• Advantages: Few JJs per logic gate, good margins,

proven
• Disadvantages: transformers, clock frequency limits,

EDA tool support (?), controlled by Northrop Grumman

• Pulse conserving logic (PCL)
• 12 levels of logic at 30 GHz
• OMA3 gate (OR3/MAJ3/AND3)
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Use AC power as the clock

Design concept for large scale clock distribution
2D array of tightly coupled local, lumped LC resonators

 Local storage of power and clock
signal in high-Q LC-resonators
 1 resonator/tile (1 tile ~5x5 µm2)

 2D mesh of LC resonators has a
zero-order mode
 Clock signal distribution over large

area with only small amplitude and
phase variation

Local  Clock 
Distribution
(2D mesh)

1 Tile

Global  Clock Distribution
(microwave impedance transformation network) 

External 
source

New!

 30 GHz design with 400 M taps/cm2

[2] A. Herr +, 2023, arXiv.2303.16792

[1] Q. Herr +, 2023, doi: 10.1063/5.0148235
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Logic families using AC power include AQFP, RQL, and the newly developed pulse conserving logic (PCL).
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References:
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Different clocking approaches
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Asynchronous Synchronous Fully Synchronous
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Pipelining in traditional SFQs 
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Overhead multiplies the cost of clocking!

TPI (Time/Instruction) = CPI x Cycle time
Inverse Performance

technology-dependent
μarchitecture-dependent

workload-dependent (% of p. hazards)
μarchitecture-dependent (# pipeline stages, etc.)

Cell count
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

= 𝑁𝑁𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + (𝑁𝑁𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝η)

Energy
EPI (Energy/Instruction) = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= ((𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 x 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎x af x CPI) x 𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
= ((𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 x 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎x af x CPI) x 𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) + (𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑x 𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

# pipeline stages (𝑝𝑝)= # gates on 
the critical path (𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑐𝑐𝑐𝑐)

RISC-V RV32I
• total # logic gates = 10,000
• # gates on the critical path = 150

~ 20-30 GHz

Varies between SFQ families

# JJs per logic gate varies between 
RSFQ, LR-SFQ, ERSFQ, eSFQ

10x

x + (𝑁𝑁𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + (𝑁𝑁𝑙𝑙_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝η))x
+ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

bias current ↑ 

the good

the bad

and the ugly

Mukhanov, 2011, doi: 10.1109/TASC.2010.2096792

Mukhanov, 2011, doi: 10.1109/TASC.2010.2096792

Ishida+, “32 GHz 6.5 mW, gate-level-
pipelined 4-bit processor ...”, 2020, doi: 
10.1109/VLSICircuits18222.2020.9162826
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Architectural approaches: there are only 3!
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Fast (circuit) clock vs 
slow (architecture) clock

Multi-threading Increase operational intensity

clk
circuit

architectural cycle
• MANA is a two-stage pipeline from a pure

computer architecture point of view. 
• This 1st stage has a latency of 1 cycle.
• This 2nd stage has a total latency of 26

cycles.
• The 2nd stage of MANA can accommodate

26 instructions in-flight although MANA
will only issue a maximum of 4
instructions successively

Ayala+, “MANA: A monolithic adiabatic integration architecture 
microprocessor ...”, 2021, doi: 10.1109/JSSC.2020.3041338

SIMT: Update 
every 𝑁𝑁 cycles

Ishida+, “32 GHz 6.5 mW, gate-level-pipelined 4-bit processor ...”, 
2020, doi: 10.1109/VLSICircuits18222.2020.9162826

• SFQ-GLPI consists of 24 pipeline stages.
• We reduced the number of threads to 12

because the chip area was limited.
• Although such degradation makes the

total area required for implementing
Register File (RF) half, it also halves the
peak performance.

Operations/Byte (operational intensity)

O
pe

ra
tio

ns
/s

Roofline model:

Williams+, “Roofline: an insightful visual performance model for 
multicore architectures”, 2009, doi: 10.1145/1498765.1498785

• SuperNPU increases the operational
intensity by assigning more registers to
each processing element (PE).

• Operational intensity is not only
μarchitecture- but also algorithm-
dependent.

Ishida+, “SuperNPU: An extremely fast neural processing unit ...”, 
2020, doi: 10.1109/MICRO50266.2020.00018
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7. Cost

Metrics:
1. Design
2. Fabrication (includes area, yield, packaging)
3. Testing
4. Shielding
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M. Zabihi +, “A life-cycle energy and inventory analysis of adiabatic
quantum-flux-parametron circuits,” 2023-07-22, arXiv.2307.12216
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Key Metrics and Limits for SCE logic
1. Power dissipation (static + dynamic)
2. Current supply
3. Area and scalability (problems: transformers, path balancing)
4. Variation sensitivity (process, magnetic field, supply current, trapped flux)
5. Memory (using logic process)
6. Architectural

1. Composability
2. Logic depth per clock cycle
3. Time usage
4. Performance

7. Cost
1. Design
2. Fabrication (includes area, yield, packaging)
3. Testing
4. Shielding
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Superconductor Digital Logic Families

28 (Draft) 2023 Table CEQIP-4

Name
Crit. 
(I, V) Po

w
er
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Q

Critical 
value, 

typical at 
4 K

Devices 
per unit 
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JJ

count
RSFQ: rapid single flux quantum I dc − 1 1.5E-04 2.8E+4 High 0.1 JLR x1 x1   2.5E+4
LR-RSFQ: inductor-resistor RSFQ I dc − 1 5.0E-05 2.8E+4 Low 0.1 JLR x1 x1.1   3.6E+1
LV-RSFQ: low-voltage RSFQ I dc − 1 5.0E-05 2.8E+4 Low 0.1 JLR x1 x1   4.9E+3
ERSFQ: energy-efficient RSFQ I dc − 1 1.5E-04 2.8E+4 0 * 0.15 JLR x1.4 x1.4   6.8E+3
eSFQ: efficient SFQ I dc − 1 1.5E-04 2.8E+4 0 * 0.15 JLR x1.4 x1   2.6E+3
Self-timed SFQ I dc − 1 1.5E-04 2.8E+4 JLR x4 x4 6.0E+2
DSFQ: dynamic SFQ I dc − 1 9.9E-05 2.8E+4 ‡ JLR   5.0E+0
TSFQ: temporal SFQ I dc − 1 1.0E-04 2.8E+4 JLR  
xSFQ: alternating SFQ I dc − 2 1.0E-04 2.8E+4 ‡ JLR  
HFQ: half flux quantum I dc − 0.5 1.8E-04 8.5E+4 Low 0.05 JLP x1.5   3.2E+01
nTron: nanowire cryotron I dc − - 1.8E-04 1.1E+4 High 1 LN   1.6E+01
hTron: heater-cryotron nanowire I dc − - 5.0E-05 >1E+9 0 1000 LNR   1.6E+01
SFQ-AC: AC-powered SFQ I ac ~ 1 1.0E-04 >1E+8 ‡ JLRT   8.1E+05
RQL: reciprocal quantum logic I ac ~ 2 5.0E-05 >1E+8 Low 0.07 JLRT x0.5   7.3E+04
PML: phase mode logic I ac ~ 1 5.0E-05 >1E+8 Low 0.04 JLRT  
PCL: pulse conserving logic I ac ~ 1 5.0E-05 >1E+8 ~0 CJLRT  
AQFP: adiabatic quantum flux parametron I ac ~ - 5.0E-05 >1E+8 ~0 0.002 JLRT   2.1E+4
RQFP: reversible QFP I ac ~ - 5.0E-05 >1E+8 ~0 ~0 JLRT   2.8E+1
QPSJ: quantum phase slip junctions V dc − - >1E+9 ~0 0.0001 CQ x1   2.0E+0
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Quantum phase-slip junctions (QPSJs)

29

Voltage controlled devices might interface better with semiconductor electronics 

[1] de Graaf +, 2018, doi: 10.1038/s41567-018-0097-9
[2] Belkin +, 2015, doi: 10.1103/PhysRevX.5.021023
[3] Malekpoor +, 2021, doi: 10.1109/TASC.2021.3121344

Fig. 2. MoGe nanowire QPSJs [2]

Fig. 1. SQUIDs using (a) JJs, (b) QPSJs [1]

Time
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~100 nA
~5 ps
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~1 mV
~2 ps

Single Flux Quantum (SFQ)

Φ0 = I⋅L = ∫V⋅dt

Fig. 3. Memoryless OR gate [3]

Cooper pair of electrons

2e = C⋅V = ∫I⋅dt

▸ Demonstration needed!
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Figure 1a in the upper left shows a SQUID with Josephson junctions consisting of a thin insulating layer between superconducting electrodes. Current in the form of Cooper pairs tunnels through the JJs as it circulates around a loop containing flux phi. The quantized voltage spike shown below figure 1a occurs when a single flux quantum moves into or out of the loop.

Figure 1b shows a quantum interference device made with QPSJs in which flux tunnels through thin superconducting wires as it circulates around a superconducting island containing a charge q. The quantized current spike shown below figure 1b occurs when a Cooper pair of electrons moves into or out of the superconducting island.

An example device using MoGe nanowire QPSJs is shown in figures 2a and 2b.

Figure 3 shows an logic gate made with QPSJs labeled J1, J2, etc.

Needed to assess scalability are demonstrations of QPSJ logic circuits with at least a thousand junctions.

References:
[1]  S. E. de Graaf et al., “Charge quantum interference device,” Nat. Phys., vol. 14, no. 6, pp. 590–594, Jun. 2018, doi: 10.1038/s41567-018-0097-9.
[2]  A. Belkin, M. Belkin, V. Vakaryuk, S. Khlebnikov, and A. Bezryadin, “Formation of quantum phase slip pairs in superconducting nanowires,” Phys. Rev. X, vol. 5, no. 2, Art. no. 021023, Jun. 2015, doi: 10.1103/PhysRevX.5.021023.
[3]  A. Malekpoor, S. A. Hashemi, and S. Jit, “Memoryless logic circuit design based on the quantum phase slip junctions for superconducting digital applications,” IEEE Trans. Appl. Supercond., vol. 31, no. 9, Art. no. 1303309, Dec. 2021, doi: 10.1109/TASC.2021.3121344.
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https://doi.org/10.1109/TASC.2021.3121344
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Additions for 2023

Name Area Organization Region
Byun, Ilkwon Cryo-Semi, QIP-QC Seoul National University, Korea Asia
Cuthbert, Michael Cryo, QIP National Quantum Computing Centre, UK Europe
DeBenedictis, Erik QIP-QC Zettaflops, USA Americas
Delfanazari, Kaveh QIP-QC University of Glasgow, UK Europe
Fagaly, Bob SCE-App Honeywell (retired), USA Americas
Fagas, Giorgios QIP Tyndall National Institute, Ireland Europe
Febvre, Pascal SCE-Fab Université Savoie Mont Blanc, France Europe
Filippov, Timur SCE-Log Hypres, USA Americas
Fourie, Coenrad SCE-EDA Stellenbosch University, South Africa Africa
Frank, Mike SCE-Log, -Rmap Sandia National Laboratories, USA Americas
Gupta, Deep SCE, Cryo-Semi SEACORP, USA Americas
Herr, Anna SCE IMEC, Belgium Europe
Herr, Quentin SCE IMEC, USA Americas
Holmes, D Scott [Chair] SCE, Cryo-Semi, QIP Booz Allen Hamilton, USA Americas
Humble, Travis QIP-QC Oak Ridge National Laboratory, USA Americas
Leese de Escobar, Anna SCE-App, -Bench Laconic, USA Americas
Min, Dongmoon Cryo-Semi, QIP-QC Seoul National University, Korea Asia
Mueller, Peter QIP-QC-SC IBM Zürich, Switzerland Europe
Mukhanov, Oleg QIP-QC, SCE-Log Seeqc, USA Americas
Nemoto, Kae QIP The National Institute of Informatics (NII), Japan Asia
Papa Rao, Satyavolu SCE-Fab, QIP SUNY Polytechnic, USA Americas
Pelucchi, Emanuele QIP-QC Tyndall National Institute, Ireland Europe
Plourde, Britton QIP Syracuse University, USA Americas
Soloviev, Igor SCE Lomonosov Moscow State University, Russia Europe
Tzimpragos, George SCE-Logic, -Metrics, -Rmap University of Michigan, USA Americas
Weides, Martin SCE, QIP University of Glasgow, UK Europe
Yoshikawa, Noboyuki SCE-Log, -Bench Yokohama National University, Japan Asia
You, Lixing SCE SIMIT, CAS, China Asia

13: Americas
10: Europe + Africa
5: Asia
==========
28 total
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This is the current list of CEQIP members working on the 2023 report. While there have been a few additions, we are always looking for new members, especially from underrepresented regions or technologies.
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Macro blocks or cell-abutment logic

• Macro blocks to perform complex functions
• Smaller, better performance
• Licensed as intellectual property (IP) blocks
• We need more of these!

• Cell abutment logic
• Cells connect directly, like LEGO blocks
• Blocks can contain JTLs or PTLs
• Problem: EDA tools do not currently support abutment

32

2.5x area reduction: 8-bit 
multipliers using standard 
RSFQ gates and single-stage 
complex RSFQ gates 

Cong +, 2021, doi: 
10.1109/TASC.2021.3091963

A B CData flow  DFF
OR

Data flow 

OR

Volk +, 2023, 10.1109/TASC.2023.3256797

Cell 
abutment 
strategy
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Presenter Notes
Presentation Notes
Macro blocks or cell-abutment logic could be another way to decrease the area overhead involved with using PTL interconnects.  Macro blocks perform more complex functions than a single logic gate. Elimination of unnecessary or redundant components allows for more compact designs with better performance. A challenge is that more complex circuits typically require more design effort and thus cost more to design. In the semiconductor world, macro blocks are licensed as intellectual property (IP) blocks as a way to provide greater return on investment. 

Cell abutment logic uses cells that connect directly, somewhat like the way that LEGO blocks snap together. An advantage of abutting cells is that no additional interconnect area is required. If cell layout does require interconnects, blocks can contain either JTLs or PTLs. A challenge is that EDA tools do not currently support abutment so manual design is required.

References:
[1]  H. Cong, M. Li, and M. Pedram, “An 8-b multiplier using single-stage full adder cell in single-flux-quantum circuit technology,” IEEE Trans. Appl. Supercond., vol. 31, no. 6, Art. no. 1303110, Sep. 2021, doi: 10.1109/TASC.2021.3091963.
[2]  H. Cong, et al., “Methodology for Designing a Rapid Single Flux Quantum (RSFQ) Standard Cell Library,” poster presentation 3EPo2B-05 [E-10] at the Applied Superconductivity Conference, Honolulu, HI, USA, Oct. 26, 2022.
[3]  J. Volk, G. Tzimpragos, A. Wynn, E. Golden, and T. Sherwood, “Low-cost superconducting fan-out with cell Ic ranking,” IEEE Trans. Appl. Supercond., vol. 33, no. 6, Art. no. 1304012, Sep. 2023, doi: 10.1109/TASC.2023.3256797.
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Clock Reduction or Elimination

• Bias current overhead estimates
per clocked gate:

≈ 1.5× (?) for clocking (splitters, mostly)
≈ 4× (?) for path balancing (superlinear)
≈ 20× (?) for unused clock time (allowing for 
jitter, long lines, pipeline hazards, etc.)
≈ 1.5× (?) for higher fraction of JJs that switch

• ≈ 180× (?) total

33

Overhead multiplies the cost of clocking!
Clocked SFQ [1] 

[1] Volk, “Circuit Abstractions for Low-Cost Fan-Out,” ISCA, 2022

[2] Tzimpragos +, 2020, doi: 10.1145/3373376.3378517

[3] Tzimpragos +, 2021, doi: 10.1109/ISCA52012.2021.00057

Temporal SFQ [1] 

▸ Reduce or eliminate clocked cells
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Presenter Notes
Presentation Notes
Clock reduction or elimination is another approach to reducing the overhead involved with clocking. A rough estimate for a DC powered logic family gives overhead factors on the order of 100. Logic families that reduce or avoid clocking might have significant advantages. Examples include asynchronous and temporal logic families.

References:
[1]  J. Volk, “Circuit Abstractions for Low-Cost Fan-Out,” presented at the ISCA 2022, New York, NY, USA, Jun. 18, 2022.
[1b] J. Volk, G. Tzimpragos, A. Wynn, E. Golden, and T. Sherwood, “Low-cost superconducting fan-out with cell Ic ranking,” IEEE Trans. Appl. Supercond., vol. 33, no. 6, Art. no. 1304012, Sep. 2023, doi: 10.1109/TASC.2023.3256797.
[2]  G. Tzimpragos et al., “A computational temporal logic for superconducting accelerators,” in Proc. 25th Int. Conf. Architectural Support for Programming Languages and Operating Systems (ASPLOS), Lausanne, Switzerland, Mar. 2020, pp. 435–448. doi: 10.1145/3373376.3378517.
[3]  G. Tzimpragos, J. Volk, A. Wynn, J. E. Smith, and T. Sherwood, “Superconducting computing with alternating logic elements,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, Jun. 2021, pp. 651–664. doi: 10.1109/ISCA52012.2021.00057.
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Data representation

• Race logic (RL) represents data in time
• Time slots within a clock period can be used

to represent information and perform
computations

• Unary SFQ is a combination of pulse-stream
arithmetic and race logic

• Benefits can include greatly reduced circuit
area

34

“0” and “1” are not the only way

[1] Gonzalez-Guerrero +, 2022, doi: 10.1145/3503222.3507765

Multiplier circuit Latency and area comparison [1] Fig. 4
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Presenter Notes
Presentation Notes
Data representations other than digital '0' and '1' can have significant advantages and seem worth exploration.
Race logic represents logic in time with gates such as First Arrival (FA) and Last Arrival (LA).
Clocked circuits can use time slots within a clock period to represent information in a variety of ways. Alternative data representations can have benefits such as greatly reduced circuit area to perform a function.

Reference:
[1] P. Gonzalez-Guerrero, M. G. Bautista, D. Lyles, and G. Michelogiannakis, “Temporal and SFQ pulse-streams encoding for area-efficient superconducting accelerators,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, New York, NY, USA, Feb. 2022, pp. 963–976. doi: 10.1145/3503222.3507765.
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Neuromorphic Circuits using Superconductor Electronics

• Characteristics
• Natural spiking behavior of Josephson junctions
• Pulses travel on striplines without the RC time

constants that typically hinder spike-based computing
• Possibly tolerant to variations in component

parameter values

• Needed:
• Design methodology
• Demonstrations at larger scale

35

A more natural fit?

Fig. 3a. Spiking in biological neurons [1]

[1] Schneider +, “Supermind: a survey of the potential of
superconducting electronics for neuromorphic computing,”
2022, doi: 10.1088/1361-6668/ac4cd2

Time

Vo
lta

ge

~1 mV

~2 ps
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Presenter Notes
Presentation Notes
Neuromorphic, or brain-like, circuits might be a more natural fit for superconductor electronics. The characteristics of neuromorphic circuits seem to match the natural spiking behavior of Josephson junctions. The ability to move signals rapidly over passive transmission lines (PTLs) allows communication without the RC time constants that typically hinder spike-based computing using semiconductor electronics. Neuromorphic computing also might be more tolerant to variations in component parameter values.

Needed are design methodologies for neuromorphic computing circuits and demonstrations at larger scale.

References:
[1]  M. Schneider, E. Toomey, G. E. Rowlands, J. Shainline, P. Tschirhart, and K. Segall, “Supermind: A survey of the potential of superconducting electronics for neuromorphic computing,” Supercond. Sci. Technol., vol. 35, no. 5, Art. no. 053001, May 2022, doi: 10.1088/1361-6668/ac4cd2.
[2]  S. Khan et al., “Demonstration of single-photon synapses,” in Conference on Lasers and Electro-Optics (2022), paper SF3G.3, San Jose, CA, USA, May 2022, p. SF3G.3. doi: 10.1364/CLEO_SI.2022.SF3G.3. (arXiv:2204.09665)
[3]  S. Khan et al., “Superconducting optoelectronic single-photon synapses,” Nat. Electron., pp. 1–10, Oct. 2022, doi: 10.1038/s41928-022-00840-9. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934612
[4]  V. K. Semenov, E. B. Golden, and S. K. Tolpygo, “BioSFQ circuit family for neuromorphic computing: Bridging digital and analog domains of superconductor technologies,” IEEE Trans. Appl. Supercond., vol. 33, no. 5, Art. no. 1400308, Aug. 2023, doi: 10.1109/TASC.2023.3252495.
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