

# Compact Superconducting Kinetic Inductance Traveling Wave Parametric Amplifiers with On-chip Bias Circuitry

L. Howe, A. Giachero, M. Vissers, J. Wheeler, J. Austermann, J. Hubmayr, J. Ullom

Applied Superconductivity Conference
Salt Lake City, UT
06 Sep., 2024
5EOr1A-01

## Parametric Amplifier Motivation



- Linear amplifiers always add noise
  - Minimum added-noise given by the Quantum Limit (QL) of 0.5 quanta
- Need high-bandwidth amplifiers operating near the QL with increased power handling
  - Quantum tech.
  - Rare physics searches
  - Cryogenic detector readout
- Kinetic Inductance TWPAs (KITs) a possible solution
  - High device yield (simple fab.)
  - Elevated temperature operation (~10 K)
  - High maximum frequency (~1 THz)
  - Large dynamic range ( $P_{1dR} \sim -70 \text{ dBm}$ )
  - B-field-resilient (>1 T)





K. Sliwa - Yale Thesis (2016)

### Kinetic Inductance TWPAs (KITs)

3WM

 $arepsilon = rac{2I_{dc}}{I_*^2 + I_{dc}^2}$ 

- Energy conversion via modulation (pumping) of some parameter (a)
  - Three-wave mixing (3WM):  $\omega_p = \omega_s + \omega_i$
  - $\circ$  Four-wave mixing (4WM):  $2\omega_p = \omega_s + \omega_i$
- Josephson-based amps modulate L<sub>1</sub>
  - Instead use the superconducting kinetic inductance L<sub>\(\rhi\)</sub>

$$L_k(I) \sim L_{dc} iggl[ 1 + \left(rac{I}{I_*}
ight)^2 + \left(rac{I}{I_*}
ight)^4 + \ldots iggr]$$

$$L = L_{dc}igl[1 + arepsilon I_p + \xi I_p^2 + \mathcal{O}igl(I^3igr)igr]$$

(a) Pump Management of the Pump Management of

#### 4WM

$$\xi=rac{1}{I_*^2+I_{dc}^2}$$



Can "turn off" 4WM with dc bias!

Need high-kinetic-inductance materials

$$L_k = rac{\hbar R_n}{\pi \Delta} pprox rac{\hbar R_n}{1.76 \ \pi k_B T_c}$$

→ Thin, disordered superconductors are ideal!



#### NIST KIT Design

- Stub-loaded inverted microstrip
  - Broadband phase-matching via dispersion engineering
- ~40k unit cells → ~8 cm length
- 10 nm NbTiN  $\rightarrow L_k = 25 \text{ pH/sq}$ 
  - o 100 nm low-loss α-Si dielectric







#### NIST KIT v2 Performance



- Gain (on/off) ~ 20 27 dB
- Pump power ~ -45 to -30 dBm (package input)
- *I<sub>c</sub>* ~ 800 μA
- $I_{\star} \sim 2.8 \text{ mA}$
- Bandwidth (3dB) ~ 3.2 GHz
- Compression ~ -75 dBm
- System noise ~ 1 quanta





#### Double KIT?

- 2 KITs in series?
  - Independent biases and pumps
- HEMT no longer necessary...?
- Possible to readout entire quantum processors with 1 KIT







#### 8-qubit Readout Demo



 Goal: show a measurable improvement in readout fidelity with KIT as 1st-stage amplifier

#### Results

- Fidelity improvement from 96.2% to 97.8%
- Signal-to-noise increase of 1.45x
- Limited by sub-optimal KIT bandwidth / gain





 $\eta_1$ 



 $\eta_2$ 

 $\eta_{1-2}$ 



## Improving KIT performance

#### Impedance Mismatch and Reflections



- Parametric oscillations grow exponentially
  - Pump depletion limits gain everywhere
- Consider a single mode's journey:

$$egin{align} I_{out,1} &= S_{21}I_{in}(1+S_{22}S_{12}S_{11}S_{21}) \ & S_{21} &= G_K\eta_K, \ S_{12} &= \eta_K \ \end{aligned}$$

$$I_{out,n} = S_{21}I_{in} \sum_{k=0}^{n} (S_{22}S_{12}S_{11}S_{21})^k$$



- Sum diverges when  $G_K \eta_K^2 \geq S_{22} S_{11}$ 
  - For 30+ dB gain (on/off) need reflections below -15 dB
  - o Smaller reflections mitigate reverse-prop. amplified noise

## Improving Match, Reducing Reflections



- Hitting  $Z_0 = 50 \Omega$  target
- Packaging improvements
  - Remove interface PCB (and optimize resulting launch)
  - Stop wirebonding!









### Eliminating Wirebonds — Pogo Pins



#### Pogo pin benefits:

- Drastic reduction of packaging inductance
- $\circ$  Fully optimized launch:  $S_{11} < -10$  dB at 70 GHz
- Simple, repeatable assembly: <5 min</li>

#### Results:

- Greater max gain, lower ripple
- Beyond-octave (4.96 GHz) bandwidth
- Operation at higher frequencies possible (future)







#### System Noise and the Impacts of Loss



- Real TWPAs are "non-ideal," cannot neglect:
  - Frequency-dependent loss
  - Signal-idler gain asymmetry



3 K 293 K

 $0.01~\mathrm{K}$ 

Need to account for external component loss

$$N^s_{out,1} = ilde{G}^s_1 \left( N^s_{in} + rac{ ilde{G}^i_1}{ ilde{G}^s_1} N^i_{in} + ilde{N}^s_{1,ex} 
ight)$$

$$N^s_{out,3} = ilde{G}^s_3 ilde{G}^s_2 ilde{G}^s_1 \left( ilde{N}^s_{in} + rac{ ilde{G}^i_1}{ ilde{G}^s_1} N^i_{in} + ilde{N}^s_{1,ex}
ight) + ilde{G}^s_2 ilde{C}^s_2 N^s_{add,2}$$

$$ilde{N}_{1,ex}^s = rac{(1-\eta_1^s)N_{T_1}^s + N_{1,ex}^s}{\eta_1^s} + rac{ ilde{G}_1^i}{ ilde{G}_1^s} rac{(1-\eta_1^i)N_{T_1}^i + N_{1,ex}^i}{\eta_1^i}$$



M. Malnou et al - "Low-noise cryogenic..." (2024)

## The On-chip rf Compnents KIT (ORCK)



- Why put things on-chip?
  - Decrease system noise (via increasing  $\eta_1$ )
  - Compactify!
  - Reduce installation complexity
- Current approach
  - Simplicity and flexibility (broadband)
    - Bias tee
    - Directional coupler





## Directional Coupler

- Podell Wiggly Coupler (WC)
  - Ultra broadband
  - Simple geometry
  - High directivity
- Challenges
  - 100 nm dielectric + 1 µm minimum feature size
  - Confines E-field in z direction  $\rightarrow$  long coupler (1500 µm)
- Results (it works!)
  - Forward coupling on target
  - Directivity is lower than desired









Port 4

Port 2

### dc Block and Microstrip Transition



- dc block developed for NIST Josephson voltage standard group
  - Overlap bowtie capacitor
    - Low cutoff
    - Lumped-element at 30 GHz
- Microstrip transition:
  - Less abrupt than previous design
  - $\circ$  Gradually increases transmission line  ${oldsymbol{\mathcal{L}}}$ 
    - Compensates via increasing C





#### Bias Tee



- Need ~100 nH of inductance on dc line
  - $L_k = 25 \text{ pH/sq for 10 nm NbTiN} \rightarrow 4000 \text{ sq}$
  - Achieve 3980 sq with meander

#### Results

- Works as a bias line!
- ~930 MHz high-Q resonance
- Solutions / workarounds ready for next fab run





#### ORCK Performance

- G ~30 dB (on/off) still achievable
- Large usable bandwidth
  - Resonances are deep but high-Q
- System noise comparable to conventional KIT



System Excess Noise,  $\tilde{N}_{sys,ex}$  [quanta]

80

60

40



Frequency [GHz]



#### Conclusion



- Packaging improvements significantly enhance performance
  - $\circ$  G > 30 dB
  - o Beyond-octave bandwidth
- NIST KITs are qubit-compatible
  - Demonstrated improvement in readout fidelity
- New on-chip rf bias circuits work!
  - KITs now much more compact and efficient







