Fe-based superconducting thin films and their potential for high field applications

Kazumasa Iida (Nihon University)

2023.09.05

Supported by

(16H04646, 20H02681)

PMJCR18J4)
NdFeAsO thin films: K. Kondo, M. Chen, T. Hatano, H. Ikuta
Dept. Materials Physics, Nagoya University

(Ba,K)122 thin films: D. Qin, M. Naito, A. Yamamoto
Dept. of Applied Physics, Tokyo University of Agriculture & Technology

Microstructure: Z. Guo, H. Gao, H. Saito, S. Hata
Dept. of Advanced Materials Science & The Ultramicroscopy Research Center, Kyushu University

High-field transport properties: C. Tarantini, J. Hänisch
ASC NHMFL & Florida State University

Inst. for Technical Physics, Karlsruhe Institute of Technology
Iron based superconductors (IBSs)

FeAs or FeSe or FeTe tetrahedron

- Common structure
- Important role for superconductivity

\[T_{c}^{\max} \approx \begin{align*} 15 \text{ K} & \quad \text{FeAs} \\ 18 \text{ K} & \quad \text{FeSe} \\ 56 \text{ K} & \quad \text{FeTe} \\ 43 \text{ K} & \quad (\text{Li, Fe})\text{OHFeSe} \\ 38 \text{ K} & \quad A\text{Fe}_{2}\text{As}_{2} \end{align*} \]

Iron based superconductors (IBSs)

FeAs or FeSe or FeTe tetrahedron

- Common structure
- Important role for superconductivity

$T_c^{\text{max}} \approx 15 \text{ K}$
$T_c^{\text{max}} \approx 18 \text{ K}$
$T_c^{\text{max}} \approx 56 \text{ K}$
$T_c^{\text{max}} \approx 43 \text{ K}$
$T_c^{\text{max}} \approx 38 \text{ K}$

Iron based superconductors (IBSs)

FeAs or FeSe or FeTe tetrahedron

- Common structure
- Important role for superconductivity

\[T_c^{\text{max}} \approx 15 \text{ K} \]
\[T_c^{\text{max}} \approx 18 \text{ K} \]
\[T_c^{\text{max}} \approx 56 \text{ K} \]
\[T_c^{\text{max}} \approx 43 \text{ K} \]
\[T_c^{\text{max}} \approx 38 \text{ K} \]

Progress of $J_c - H$ for NdFeAs(O,F) (Nd-1111)

$J_c \sim 8$ MA/cm2 for NdFeAs(O,F)

4.2 K $H \parallel c$

2019 Kauffmann-Weiss et al., Nanoscale Adv. 1, 3036

2016 Tarantini et al., Sci. Rep. 6, 36047
Measured J_c is around 10~20% of J_d

$J_c \approx 8 \text{ MA/cm}^2$ for NdFeAs(O,F)

Higher the J_d, higher the J_c

Depairing current density J_d

(theroretical upper limit)

$$J_d(T) = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2(T)\xi(T)}$$
Over-doping increases the condensation energy

- $J_c \sim 8$ MA/cm² for NdFeAs(O,F)
- Higher the J_d, higher the J_c
- Depairing current density J_d (theoretical upper limit)

$$J_d(T) = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2(T)\xi(T)}$$

- Over-doping increase J_d, and hence J_c

Combining over-doping and microstructural modification

- Depairing current density J_d (theoretical upper limit)
- Higher the J_d, higher the J_c
- Over-doping increase J_d, and hence J_c

$J_d(T) = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2(T)\xi(T)}$

- $J_c \sim 8 \text{ MA/cm}^2$ for NdFeAs(O,F)
- $\sim 150 \text{ MA/cm}^2$ @ 4.2 K

** M. Miura et al., NPG Asia Mater. 14, 85 (2022).
Solubility limit depends on F and H

\[
\text{O}^{2-} \rightarrow \text{F}^- \text{ or H}^- + e^- \quad \text{(electron doping)}
\]

- Substitution level is limited up to \(~0.2\) (For \(\text{SmFeAsO}_{1-x}\text{F}_x\))
- For H, the substitution level is increased up to \(~0.8\)
- Heavily electron doped film can be obtained
- \(T_c\) keeps constant around 50 K up to \(x=0.4\)

\(\text{LnFeAsO} \ (\text{Ln}: \text{lanthanoide})\)

IEEE-CSC, ESAS, and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2023. Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy
LnFeAsO: penetration depth and coherence length

- λ of $LnFeAsO$ may be decreased with electron doping
- No clear relation between ξ and electron doping

Growth of F- and H-doped NdFeAsO thin films

NdFeAsO$_{1-x}$F$_x$

parent NdFeAsO

NdFeAsO$_{1-x}$H$_x$

Nd(O,F) overlayer

NdFeAs(O,F) \rightarrow F$^-$/O$^2-$

MgO(001) sub.

NdFeAsO

vacuum

CaH$_2$ powder

heat treatment

400~500°C up to 72 h

Phase pure & c-axis oriented
d~24 nm

K. Kondo, K. Iida et al., SuST 33, 09LT01 (2020).
Comparison between H- and F-doping: T_c and carrier density

- A constant T_c of ~ 50 K up to c~8.54 Å, corresponding to carrier density n~2×10^{21} /cm3

- c varied in a wide range, 8.44 Å and 8.55 Å with T_c~50 K [NdFeAs(O,H)]

- The maximum n was around 6×10^{21} /cm3 [almost 3 times higher than NdFeAs(O,F)]

K. Kondo, K. Iida et al., Sust 33, 09LT01 (2020).

Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy
\(J_c \) for NdFeAs(O,H) is higher than that for NdFeAs(O,F)

- \(J_c(4\,\text{K},0\,\text{T}) > 17\,\text{MA/cm}^2 \), which is twice larger than NdFeAs(O,F)
 - c.f.) 20 MA/cm\(^2\) for the irradiated SmFeAs(O,F) single crystal \[1\]
- \(F_p \) of NdFeAs(O,H) is 1.5 times higher than that of NdFeAs(O,F)

NdFeAs(O,H) shows higher H_{irr} than NdFeAs(O,F)

- Upper critical field H_{c2} of NdFeAs(O,H) is almost comparable to that of NdFeAs(O,F)
- Irreversibility field H_{irr} of NdFeAs(O,H) is higher than that of NdFeAs(O,F)

$H_{\text{irr}} \propto H_{c2}^{\gamma_2}$ for $H \parallel c$

Hanzawa et al., PRM 6, L1118 (2022).
Band calculation

Fully substituted H and F of 1111

\begin{align*}
\text{CaFe}_{0.9}\text{Co}_{0.1}\text{AsH} \\
\text{CaFe}_{0.9}\text{Co}_{0.1}\text{AsF}
\end{align*}

Evolution of band structure with H

\begin{align*}
\text{NdFeAsO} & \quad \text{NdFeAs(O,H)} \\
\text{LaFeAsO} & \quad \text{CaFe}_{0.9}\text{Co}_{0.1}\text{AsH}
\end{align*}

V. Vildosola et al., PRB 78, 064518 (2008).

Y. Muraba et al., PRB 89, 094501 (2014).
(Ba,K)Fe$_2$As$_2$
K-doped $\text{AElFe}_2\text{As}_2$: Only epitaxial thin film has not been realised

- High $T_c \sim 38$ K
- $J_d \sim 170$ MA/cm2
- $\gamma \sim 1 - 2$

- High $T_c \sim 38$ K, high $J_d \sim 170$ MA/cm2 & low electromagnetic anisotropy
- The most promising material for applications (e.g. PIT wires and bulk magnets)
- All material forms except for epitaxial thin films have been available
K-doped Ba122 epitaxial thin film on CaF$_2$ sub.

Fluoride sub. & low growth temperature (~400$^\circ$ C) are the key to epitaxial growth

Toward bi-crystal K-doped Ba122 experiments

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Bi-crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaF$_2$ (001)</td>
<td>Not available</td>
</tr>
<tr>
<td>MgO (001)</td>
<td>Available</td>
</tr>
<tr>
<td>SrTiO$_3$ (001)</td>
<td>Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Bi-crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAT1 (001)</td>
<td>Available</td>
</tr>
<tr>
<td>Al$_2$O$_3$ (0001)</td>
<td>Available</td>
</tr>
</tbody>
</table>

1 La$_{0.3}$Sr$_{0.7}$Al$_{0.65}$Ta$_{0.35}$O$_3$
Toward bi-crystal K-doped Ba122 experiments

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Bi-crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaF$_2$ (001)</td>
<td>Not available</td>
</tr>
<tr>
<td>MgO (001)</td>
<td>Available</td>
</tr>
<tr>
<td>SrTiO$_3$ (001)</td>
<td>Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Bi-crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAT (001)</td>
<td>Available</td>
</tr>
<tr>
<td>Al$_2$O$_3$ (0001)</td>
<td>Available</td>
</tr>
</tbody>
</table>

1) La$_{0.3}$Sr$_{0.7}$Al$_{0.65}$Ta$_{0.35}$O$_3$

- Oxygen is released during deposition (SrTiO$_3$)
- Reaction layer is present at the interface (LSAT)
- Ba122 grows epitaxially on MgO
(Ba,K)Fe$_2$As$_2$ was not epitaxially grown -> due to the low growth temperature (cf. 800°C for Co-$^{[1]}$ and P-doped$^{[2]}$ Ba122)

30° rotated grains were present

Strategy for K-doped Ba122 on MgO

K-doped Ba122

Ba122

CaF₂ cover layer

K-doped Ba122

Ba122 buffer

MgO sub.

20 nm (720°C)

80 nm (400°C)

~30 nm

Interface

K-doped Ba122

Ba122 buffer layer

Sharp interface between Ba122 and K-doped Ba122!

D. Qin et al., Sust 35, 09LT01 (2022).

Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy
The 00l peaks arising from K-doped Ba122 and Ba122 were observed. K-doped Ba122 was grown epitaxially on Ba122-buffered MgO. T_c of K-doped Ba122 was 37.5 K.
K-doped Ba122 bicrystals are realised

- Structurally fine K-doped Ba122 films are grown on MgO bi-crystal substrates
- Microbridge was fabricated by all dry processes (Ar ion etching or laser cutting)

\[\theta_{GB} = 13^\circ \]

103 ϕ-scans

Grain Boundary (GB)

intra-grain

inter-grain

GB

Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy
Transport properties of K-doped Ba122 bicrystals

- Even at 12 K and 20 K, inter-grain J_c of K-doped Ba122 is higher than those of other IBS [Co-doped Ba122 (12 K), Fe(Se,Te) (4 K), NdFeAs(O,F) (4 K)].

- Critical grain boundary angle θ_c of (Ba,K)122 is ~9°, similarly to other

T. Hatano et al., in preparation
Transport properties of K-doped Ba122 bicrystals

- Even at 12 K and 20 K, inter-grain J_c of K-doped Ba122 is higher than those of other IBS [Co-doped Ba122 (12 K), Fe(Se,Te) (4 K), NdFeAs(O,F) (4 K)]
- Critical grain boundary angle θ_c of (Ba,K)122 is $\sim 9^\circ$, similarly to other IBS
- The θ_c of (Ba,K)122 is unchanged by applied magnetic fields (c.f. Co-doped Ba122)
1. Over-doped NdFeAsO showed a high J_c and low anisotropy

 -> The strategy for over-doping method can be applicable

2. Low angle GBs and their networks work as strong pinning centers in K-doped Ba122

3. Inter-grain J_c exceed 1 MA/cm2 even at $\theta_{GB}=24^\circ$ and 12 K

4. The critical angle θ_c for all IBSs seem to be $\sim 9^\circ$

5. The θ_c for K-doped Ba122 is unchanged by magnetic field