ASC2024 Salt Lake City

Status of Iron Based Superconductors: characteristics

and relevant properties for applications

Kazumasa Iida, Nihon University

2024.9.3, Salt Lake City

superconductivity

IOP Publishing

Acknowledgement

K. Kondo, M. Chen, T. Hatano, H. Ikuta

D. Qin, M. Naito, A. Yamamoto

KYUSHU UNIVERSITY Z. Guo, H. Gao, H. Saito, S. Hata

J. Hänisch, B. Holzapfel

C. Tarantini, J. Jaroszynski

H. Hiramatsu, H. Hosono

T. Suzuki, M. Miura

Supported by

(16H04646, 20H02681)

B. Maiorov

S. Eley

Overview

1. Iron-based superconductors (IBSs)

• Physical properties

2. Tuning of the superconducting properties

- SC transition temperature (strain, monolayer, intercalation, EDLT)
- Grain boundary, GB
- Critical current density (natural defects, APC, thermodynamic approach)

3. Progress Toward applications

• Use of IBS wires and bulks in magnets, and perspective

Discover of Iron based superconductors (IBSs)

First Fe-based superconductor in 2006

Published on Web 07/15/2006

Iron-Based Layered Superconductor: LaOFeP

Yoichi Kamihara,[†] Hidenori Hiramatsu,[†] Masahiro Hirano,^{†,‡} Ryuto Kawamura,[§] Hiroshi Yanagi,[§] Toshio Kamiya,^{†,§} and Hideo Hosono^{*,†,‡}

ERATO-SORST, JST, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-4, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received May 15, 2006; E-mail: hosono@msl.titech.ac.jp

Published on Web 02/23/2008 In 2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp

Iron based superconductors (IBSs): FeAs or FeCh tetrahedron

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Plenary presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Electronic structure: Multiband superconductors

Fe3d orbitals play an important role for superconductivity

Fe 3*d* orbitals dominate the total DOS around *E*_F

Five Fe 3*d* bands across $E_F \rightarrow$ Multiband superconductors

D. J. Singh and H.-M. Du, Phys. Rev. Lett. 100 237003 (2008).

V. Vildosola et al., Phys. Rev. B 78 064518 (2008).

Mganetic phase diagrams of 122, 1111 and 11

T. Shibauchi et al., Annu. Rev. Condens. Matter Phys. 5 113 (2014).

not harmful to SC (c.f. Cuprates)

High upper critical field, H_{c2} , and low anisotropy

 H_{c2}

 $\gamma_{\rm Hc2}$

 H_{c2} c

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Plenary presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

8

Comparison between cuprates and IBSs

	Cuprates	IBSs	
Degree of freedom in material design	high (many compounds)	high (many compounds)	
Parent compound	Mott insulator	AFM bad metal	
Gap symmetry	d-wave, single band	extended s-wave (s± or s++), 5 bands	
Doping	Hole: $T_c = 154 \text{ K}^{\text{i}}$ Electron: $T_c = 30 \text{ K}^{\text{ii}}$	Hole: $T_c=38 \text{ K}^{\text{iii}}$, isovalent: $T_c=31 \text{ K}^{\text{iv}}$ Electron: $T_c=55 \text{ K}^{\text{v}}$, 65 K ^{vi}	
<i>H</i> _{c2} anisotropy	~5: RE-123 ~150: Bi-2223	1~2: 11 and 122 1~5: <i>Ln</i> -1111	
Pairing mechanism	spin fluctuations?	spin fluctuations? orbital fluctuations?	
	i) HgBa ₂ Ca ₂ Cu ₃ O _{8+δ} w/pressure ii) La _{1-x} Ce _x CuO ₄	iii) $Ba_{0.6}K_{0.4}Fe_2As_2$ v) $LnFeAs(O,F)$ ($Ln=Nd$, Sn iv) $BaFe_2(As_{0.66}P_{0.33})_2$ vi) FeSe monolayer	

Overview

- 1. Iron-based superconductors (IBSs)
 - Physical properties

2. Tuning of the superconducting properties

- SC transition temperature (strain, monolayer, intercalation, EDLT)
- Grain boundary, GB
- Critical current density (natural defects, APC, thermodynamic approach)
- **3. Progress Toward applications**
 - Use of IBS wires and bulks in magnets, and perspective

A significant jump of T_c by pressure

9 K -> 37 K (7 GPa)

FeSe:

HgBa₂Ca₂Cu₃O_{8+ δ}: 130 K -> 153 K (15 GPa)

N. Takeshita et al., J. Phys. Soc. Jpn. 82 023711 (2013). S. Margadonna et al., PRB 80 064506 (2009).

> Isotropic pressure enhances T_c

 \succ Chemical pressure also enhances T_{c}

H. Takahashi et al., Nature 453 376 (2008).

Z. Ren, Z. Zhao, Adv. Mater. 21 4584 (2009).

Pressure & strain induced superconductivity in Ba122

S. Kasahara et al., PRB 81 184519 (2010).

J. Engelmann, K.I. et al., Nat. Commun. 4 2877 (2013). J. Kang et al

J. Kang et al., PNAS 117 21170 (2020).

$T_{\rm c} = 65$ K in a monolayer of FeSe

- > SC gap opened at between 55 K $\leq T \leq$ 65 K for 1 ML
- > Only electron-like pockets appeared at M-point for 1 ML
- > Hole-like pocket started to appear at Γ -point for over 2 ML
- FeSe ML is very sensitive to air -> quickly degraded

Wang et al., Chin. Phys. Lett. **29** 037402 (2012). Tan at al., Nat. Mater. **12** 634 (2013).

13

Tuning superconducting properties, T_c , by intercalation

(Li,Fe)OHFeSe (11111) single crystal

Dong et al., Phys. Rev. B, 92 064515 (2015).

- (Li,Fe)OHFeSe single crystals grown by ion exchange
- Electronic structure is very similar to the FeSe ML ($T_c \sim 42$ K) ¹⁴

Tuning superconducting properties, T_c , by intercalation

Tuning superconducting properties, T_c , by protonation

Protonation-induced SC in FeSe

Electric double layer transistor (EDLT)

Tuning superconducting properties by EDLT

SC induced by EDLT

first demonstration

in IBS [FeSe~0.6nm]

J. Shiogai et al., Nat. Phys. 12 42 (2016).

T_{c} enhancement by EDLT

FeSe_{0.8}Te_{0.2} (>10 nm)

S. Kouno et al., Sci. Rep. 8 14731 (2018).

So far, enhancement of T_c by EDLT only for FeSe & Fe(Se,Te)

 $TIFe_{1.6}Se_2$ (~20 nm) NdFeAsO (~7 nm)

T. Katase et al., PNAS 111 3979 (2014). K. Iida et al., unpublished

100

, Т(К)

0

200

300

4000

 $R_{\rm sheet}$ (Ω)

3600

3400

 $V_{a}=0$

 V_{G} = +2 V V_{C} = +4 V

10 T (K) 20

Ambipolar suppression of T_c BaFe₂(As,P)₂ (~10 nm)

E. Piatti, K.I. et al., Phys. Rev. Mater. 3 044801 (2019).

Overview

- 1. Iron-based superconductors (IBSs)
 - Physical properties

2. Tuning of the superconducting properties

- SC transition temperature (strain, monolayer, intercalation, EDLT)
- Grain boundary, GB
- Critical current density (natural defects, APC, thermodynamic approach)
- **3. Progress Toward applications**
 - Use of IBS wires and bulks in magnets, and perspective

Large critical angle $\theta_{\rm c}$ & constant $J_{\rm c,inter}$ ($\theta_{\rm GB} > \sim 15^{\circ}$)

T. Hatano, K.I. et al., NPG Asia Mater. 16 41 (2024).
K. Iida et al., Supercond. Sci. Technol. 32 074003 (2019).
T. Katase et al., Nat. Commun. 2 409 (2011).
W Si et al., Appl. Phys. Lett. 106 032602 (2015).
E. Sarnelli et al., IEEE Trans. Appl. Supercond. 27 7400104 (2017).

> A critical angle θ_c of 9°, which is larger than cuprate

$$\blacktriangleright$$
 The $J_{c,inter}$ is constant at $\theta_{GB} > \sim 15^{\circ}$

Excellent GB properties in (Ba,K)122

Unchanged θ_c for (Ba,K)122 even in field

GB transparency is increased by over-doping (Ba,K)122

- > Over-doped grains enhanced the proximity effect
- SNS JJ model described the data

Z. Cheng et al., Mater. Today Phys. 28 100848 (2022).

23

Detailed analyses on polycrystalline (Ba,K)122

Hot-pressed (Ba,K)122 tape

- Grain alignment is important (GB connectivity)
- Clean GB is important (the number of GB connections)

F. Kametani *et al.*, *Appl. Phys.* Express **17** 013004 (2024).

FeAs wetting phase and BaO (Blocking the supercurrent flow)

Detailed in 4MOr2A-01 by F. Kametani (4/9)

24

Overview

- 1. Iron-based superconductors (IBSs)
 - Physical properties

2. Tuning of the superconducting properties

- SC transition temperature (strain, monolayer, intercalation, EDLT)
- Grain boundary, GB
- Critical current density (natural defects, APC, thermodynamic approach)
- **3. Progress Toward applications**
 - Use of IBS wires and bulks in magnets, and perspective

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Plenary presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Natural defects in IBS thin films

APC in IBS thin films

Materials	Methods	Microstructure	<i>Т</i> _с (К)	Refs.
Co-doped Ba122	Multilayer or Quasi-	Ba122 or $SrTiO_3$ insertion	25.4 -> 26.0	[1], [2]
Fe(Se,Te)	mullidyer	CeO ₂ insertion, strain	21.3 -> 20.4	[3]
Co-doped Ba122	BaZrO ₃ addition to PLD	Nano BaZrO ₃ rods	27.1 -> 24.6 (2 mol% BZO)	[4]
P-doped Ba122	targets	Nano BaZrO ₃ particles	26.3 -> 25 (3 mol% BZO)	[5]
Co-doped Ba122	BaHfO ₃ addition to PLD targets	Nano BaHfO ₃ particles	22.0 -> 19.5 (1 mol%BHO)	[6]
FeSe	SrTiO ₃ addition to PLD targets	Nano SrTiO ₃ rods	not shown	[7]
Fe(Se,Te)	Proton irradiation	Splayed cascade defects	18 -> 18.5 (1×10 ¹⁵ cm ⁻²)	[8]
NdFeAs(O,F)	α –particle irradiation	No microstructure	49 -> 46 (5×10 ¹⁵ cm ⁻²)	[9]
(Li,Fe)OHFeSe	TM (Mn) doping	No microstructure	42 -> 37	[10]

✓ Unlike cuprates, IBSs are robust against irradiation (disorder)

✓ For Ba-122, T_c decreases with -1 K/mol% (cf. -0.2~-0.1 K/mol% for REBCO)

[1] S. Lee *et al.*, *Nat. Mater.* **12** 392 (2013).

[4] J. Lee et al., SuST **30** 085006 (2017).

[2] C. Tarantini *et al.*, *Sci. Rep.* **4** 7305 (2014).
[3] S. Seo *et al.*, *NPG Asia Materials* **12** 7 (2020).

[6] S. Meyer et al., J. Phys.: Conf. Ser. 1559 012052 (2020).
[7] T. Horide et al., Thi. Sol. Films 733 138802 (2021).

(20) [9] T. Holide et al., 111. 301. Fillins 733 13880

[8] T. Ozaki *et al.*, *Nat. Commun.* **7** 13036 (2016). [9] C. Tarantini *et al.*, *SuST* **31** 034002 (2018).

[5] M. Miura *et al.*, *Nat. Commun.* **4** 2499 (2013). [10] D. Li *et al.*, *Sust* **32** 12LT01 (2019).

- 0 mol.% BZO

2 mol.% BZO

8 mol.% BZO

4.2K

 $(H \perp film)$

2

4

6

Magnetic Field (T)

8

10

12

14

180

160

140

-4 mol.% BZO

4.2K

 $(H \perp film)$

mol.% BZO

Target modifications (BZO nano cylinders)

1400

700

а Pristine: J_set = 0.9 MA cm⁻² p cm⁻².J.^{sell}= 1.4 MA cm⁻¹ J_c (A cm⁻²)

Proton irradiation

FeSeo.sTeo.s

(splayed cascade defects)

T. Ozaki et al., Nat. Commun. 7 13036 (2016).

S. Seo et al., NPG Asia Materials 12 7 (2020).

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, 0 2024. Plenary presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

~4 nm

2 mol.% BZO

4 mol.% BZ0

4 6 8 10 12 Magnetic Field (T)

Mn-doped (Li,Fe)OHFeSe (11111) thin films

Thermodynamic approach + APC

Solubility limit in SmFeAsO

 $0^{2-} \rightarrow \mathbf{F}^- \text{ or } \mathbf{H}^- + e^-$ (electron doping)

S. Iimura et al., J. Asia Ceramic Societies 5, 357 (2017).

- Substitution level is limited up to ~0.2 (For SmFeAsO_{1-x}F_x)
- For H, the substitution level is increased
 up to ~0.8
- Heavily electron doping can be achieved

32

Thermodynamic approach + APC for SmFeAs(O,H)

M. Miura, K. I. et al., Nature Materials (2024).

Current status of the best-performing J_c -H (single xtal. sub.)

Overview

- 1. Iron-based superconductors (IBSs)
 - Physical properties
- **2. Tuning of the superconducting properties**
 - SC transition temperature (strain, monolayer, intercalation, EDLT)
 - Grain boundary, GB
 - Critical current density (natural defects, APC, thermodynamic approach)

3. Progress Toward applications

• Use of IBS wires and bulks in magnets, and perspective

- > multi turn PLD system, operating at f=20-60 Hz
- > FeSe_{0.4}Te_{0.6} target, $\phi = 60 \text{ mm}$, t = 8 mm
- > Self-field $I_c \sim 108 \text{ A} \otimes 4.2 \text{ K} (1 \text{ m tape}, T_c = 17.5 \text{ K})$
- > Short sample: Self field $I_c \sim 175$ A corresponding to $J_c \sim 2.3$ MA/cm²

L. Liu et al., Adv. Eng. Mater. 25 2201536 (2023).

S. Wei et al., Sust **36** 04LT01 (2023).

Fe(Se,Te) tapes

Realising a cheap, Fe(Se,Te) Coated Conductor

• Thick films of Fe(Se,Te) by e-depo

Reported by L. Piperno (1MOrB-02, 2/9)

• Irradiation effects on Fe(Se,Te) films

Reported by M. Iebole & F. Rizzo (1MOr1B-03, -04, 2/9)

Pinning mechanism

Microwave vortex motion in FeSe

Reported by N. Pompeo

(1MOr1B-05, 2/9)

A STATE

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Plenary presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

(Ba,K)122 bulks fabricated by data- & researcher driven process design

CaKFe₄As₄ (1144) bulk samples

Hybrid phase between $AeFe_2As_2$ (Ae = Ca, Sr) and AFe_2As_2 (A=K, Rb, Cs)

- > The *c*-axis textured 1144 was realized
- A self-field J_c of reached 12 kA/cm², which is comparable to that of K:Ba122 bulks

 $T_c \sim 36 \text{ K w/o doping}$

3.0

Current status of J_c -H plots for IBSs tapes (short samples)

- Fe(Se,Te)/IBAD-MgO showed the highest J_c in low field
 regime although T_c is the lowest
- In-field J_c of K-doped Ba122
 tape was superior to that of the
 P-doped Ba122/IBAD-MgO

Perspective (still mature ... but)

IOP Publishing

Supercond. Sci. Technol. 32 (2019) 070501 (3pp)

Superconductor Science and Technology

https://doi.org/10.1088/1361-6668/ab1fc9

Viewpoint J. Jaroszynski

Moreover, the cost of IBS wire can be four to five times lower than that of Nb₃Sn, making it more expensive than NbTi, but with much higher critical parameters than Nb₃Sn. Attempts to make a superconducting wire started immediately, using either the powder-in-tube (PIT) [11–13] or coated conductor [14, 15] methods.

The cost of IBS wire can be four to

five times lower than that of Nb₃Sn,

>20 T at 4.2 K or >10 T at 20-30 K making it more expensive than NbTi,

but with much higher critical

parameters than Nb₃Sn.

Summary

- 1. A review of the current status of IBSs has been conducted.
- 2. A review of various techniques for tuning T_c has been conducted.
- 3. High-angle grain boundaries (GBs) do block supercurrent flow, but not as severely as in the cuprates. This is a driving force for magnet applications using polycrystalline wires and bulk materials.
- 4. A strategy for improving the polycrystalline tapes and bulks of K-doped Ba122 has been proposed.
- 5. J_c -B performances have been improved significantly by APC and thermodynamic approach combined with APC (films).
- 6. Long length wires and tapes have been developed significantly.

Thank you for your attention!

Iron-based Superconductors: Advances towards applications

> Phoenix Seagaia Resort Convention Center (Miyazaki, Japan) February 13th – 15th, 2025

https://smartconf.jp/content/ibs2app