

"Are REBCO NI Magnets Really Self-protected?"

Case in point: **Quench Response of the SPARC Toroidal Field Model Coil**

Brian LaBombard MIT PSFC

September 4, 2024

"Are REBCO NI Magnets Really Self-protected?"

MIT Plasma Science and Fusion Center and **Commonwealth Fusion Systems** executed a REBCO no-insulation magnet development program – culminating in the construction, operation and quench-testing of the SPARC Toroidal Field Model Coil.*

IEEE Transactions on Applied Superconductivity 34 (2024) 1.

Fusion Systems *Acknowledgements!* **SPARC NI magnet development made possible by an outstanding PSFC/CFS Team!**

Corinne Cotta Sam Heller Phil Michael Ron Rosati Ronnie Turcotte

Sue Agabian Mary Davenport Amanda Hubbard Kevin Moazeni Mike Rowell Kiran Uppalapati. **Karlsruhe Institute of Technology

09/04/24 **COMPUTER COMPUTER COMPUTER COMPUTER** SPARC • All Rights Reserved All work funded by Commonwealth Fusion Systems

TFMC achieved many programmatic goals – one of them was to deliberately quench! IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.*

- Design, build and operate a no-insulation HTS DC magnet at relevant scale for fusion power application – demonstrating 20T on conductor
- Employ a modular design that meets electrical, mechanical, thermal requirements for SPARC and facilitates rapid manufacturing
- De-risk magnet design and manufacturing for SPARC TF
- ü*Determine quench response – by deliberately forcing quench via abrupt and sustained open circuit condition*

Key takeaway: NI coils are inherently stable and quench resistant!

*** TFMC Publications in IEEE Transactions on Applied Superconductivity 34 (2024) 1.**

09/04/24 **COMPASSES EXAMPLE 2018 12:00 SPARC • All Rights Reserved** Hartwig, Z.S., *et al.*, "The SPARC Toroidal Field Model Coil Program" Vieira, R.F., *et al.*, "Design, Fabrication, and Assembly of the SPARC Toroidal Field Model Coil" Golfinopoulos, T., *et al.*, "Building the Runway: A New Superconducting Magnet Test Facility Made for the SPARC Toroidal Field Model Coil" Michael, P.C., *et al.*, "A 20-K, 600-W, Cryocooler-Based, Supercritical Helium Circulation System for the SPARC Toroidal Field Model Coil Program" Fry, V. , *et al., "*50-kA Capacity, Nitrogen-Cooled, Demountable Current Leads for the SPARC Toroidal Field Model Coil" Whyte, D.G., *et al.*, "Experimental Assessment and Model Validation of the SPARC Toroidal Field Model Coil"

First –

How might NI coils be damaged?

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

A . **Normal zone formation**

Normal Zone Formation

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

A . **Normal zone formation**

- Current bypasses normal zone
	- **This is a robust self-protection response.** Normal zone heating is minimized; thermal conduction away from normal zone promotes thermal stability.

Normal Zone Formation

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

A . **Normal zone formation**

- Current bypasses normal zone
	- **This is a robust self-protection response.** Normal zone heating is minimized; thermal conduction away from normal zone promotes thermal stability.
- But if coil inductance and sustained current densities are high enough, thermal instability grows.
- The result is a hot spot, potentially resulting in overheat and burn – depending on thermal diffusion lengths, L/R time, current density, … that determine the volume heated and stored magnetic energy deposited in that volume.

Hot spot, burn

IEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

A . **Normal zone formation**

- Current bypasses normal zone
	- **This is a robust self-protection response.** Normal zone heating is minimized; thermal conduction away from normal zone promotes thermal stability.
- But if coil inductance and sustained current densities are high enough, thermal instability grows.
- The result is a hot spot, potentially resulting in overheat and burn – depending on thermal diffusion lengths, L/R time, current density, … that determine the volume heated and stored magnetic energy deposited in that volume.

If normal zone extends across all turns before stored energy is dissipated, current bypass protection is eliminated.

Normal Zone Formation **Hot spot, burn**

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

B. **Inductive quench cascade**

Hot spot, burn

09/04/24 © SPARC • All Rights Reserved 10

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

B. **Inductive quench cascade**

- Current in adjacent turns increase to conserve flux – potentially causing a turn-byturn inductively-driven quench cascade.
	- **This is potentially a self-protection response -** producing secondary normal zones with large azimuthal extent in adjacent turns and pancakes.
	- Azimuthal extent of secondary normal zones may provide sufficient volume to handle stored energy dump.

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

B. **Inductive quench cascade**

- Current in adjacent turns increase to conserve flux – potentially causing a turn-byturn inductively-driven quench cascade.
	- **This is potentially a self-protection response -** producing secondary normal zones with large azimuthal extent in adjacent turns and pancakes.
	- Azimuthal extent of secondary normal zones may provide sufficient volume to handle stored energy dump.
- But -- peak currents and resultant Lorentz loads on conductor can be quite large, potentially causing structural damage

09/04/24 © SPARC • All Rights Reserved 12 **Damaging Lorentz Loads Hot spot, burn**

SPAF

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

C. **"Copper coil" energy dump**

Normal Zone Formation **Inductive Quench Cascade**

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

C. **"Copper coil" energy dump**

- With HTS normal everywhere, azimuthal current continues to flow until magnet stored energy is fully dissipated.
	- **This is a challenge for high stored energy NI coils**
		- **--** *the coil functions as its own dump resistor.*

First – How might NI coils be damaged?

Consider 'three phases of quench' for an NI-coil

C. **"Copper coil" energy dump**

- With HTS normal everywhere, azimuthal current continues to flow until magnet stored energy is fully dissipated.
	- **This is a challenge for high stored energy NI coils**
		- **--** *the coil functions as its own dump resistor.*
- Current takes the azimuthal path of least resistance -- and deposits heat in the most resistive portion of that path.
- Depending on stored energy and ability to azimuthally 'flatten' energy dissipation, excess temperature and/or temperature gradients can result, causing damage.

Hot spot, burn Damaging Lorentz Loads

Normal Zone Formation **Inductive Quench Cascade**

Peak coil temperatures exceed allowable

Lessons Learned from SPARC NI Coil Development

*SPARC NI Coils Employ Unique No-Insulation Design**

• HTS tape stack and copper co-conductor is inserted and soldered into spiral groove cut into Nitronic® radial plates.

- **Provides for excellent thermal / electrical connection among all components in unit cell**
- **Accommodates high Lorentz loading**

* Vieira, R.F., *et al.*, "Design, Fabrication, and Assembly of the SPARC Toroidal Field Model Coil," IEEE Transactions on Applied Superconductivity 34 (2024) 1. –––––––––––––––––––––––

Metric: NI Coil Stored Energy – Normalized to Conductor Unit *Cell Mass (that thermally participates during quench)*

While not the only metric that matters, it's is a good measure of the NI Self-Protection Challenge.

- Low stored energy NI coils exhibit similar quench dynamics as high stored energy, but with much less risk of runaway hot spots, burn and local overheating.
- *Based on that experience, there's a tendency to think that NI coils are in general self-protected -- but they're not.*
- Self-protection is lost in x100 increase from small Quench Test Coils to SPARC TFMC and TF

Double Pancake Quench Test Coil @8kA

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City,

*<u>Double-Pancake Quench Test Coils

– found to be robustly stable and robustly self-protecting*</u>

Objectives: Test grooved, stacked plate concepts; refine design; develop manufacturing methods; explore quench response

190425014

- 18 turn double pancake, I_{on} < 10kA
- Heater-triggered and over-current quench tests at 12K (helium vapor)

Result:

- No damage from quench with coil current forced to remain on at 10kA
- Current bypasses normal zone leading to quench recovery in response to heater-triggered normal zones
- Inductive quench <=> recovery limit cycle oscillations observed

⁶ Coil Current [kA]

Double Pancake Quench Test Coil @8kA

2 4

> **Quench Heater Current [A]**

Hot Spot Reg Temperature [K] **⁶ Coil Current [kA]**

Bus Voltage [mV]

B-field [Tesla]

Energy = 900J 990J 1080J 1180J 1260J

Seconds

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City,

Double-Pancake Quench Test Coils – found to be robustly stable and robustly self-protecting

Objectives: Test grooved, stacked plate concepts; refine design; develop manufacturing methods; explore quench response

190425014

B. LaBombard

- 18 turn double pancake, I_{on} < 10kA
- Heater-triggered and over-current quench tests at 12K (helium vapor)

Result:

- No damage from quench with coil current forced to remain on at 10kA
- Current bypasses normal zone leading to quench recovery in response to heater-triggered normal zones
- Inductive quench <=> recovery limit cycle oscillations observed

Single Pancake D-Coil @8kA

Fiber optic measurement of azimuthal current

Azimuthal Current [A]

9000

8000

7000 6000 5000

4000

5000

6000

Azimuthal Current [A]

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Individual TFMC Pancakes Tested at 77K – found to be robustly stable and robustly self-protecting

Objectives: Verify HTS performance by pushing TFMC pancakes into saturation at 77K, comparing azimuthal current with model projections

- 16 turn single pancakes, LN_2 , I_{on} < 12kA
- Pushed well into saturation

Result:

- No risk of quench damage
- Current bypasses low Ic zones
- Large pancake surface area in $LN₂$ immersion accommodates dissipation at the highest current levels
- Low stored energy/mass => TFMC pancake is quench damage safe even if it is warmed up at full test current, open circuited

All 16 TFMC pancakes were tested by comparing measured saturation response (current and voltages) against theoretical projections from HTS tape data.

Terminal Current [A]

TFMC Pancake Saturation Response at 77.3 K

Ic=0.98*theoretical

Ic=theoretical

Measurement

Single Pancake D-Coil @8kA

Fiber optic measurement of azimuthal current

All 16 TFMC pancakes were tested by comparing measured saturation response (current and voltages) against theoretical projections from HTS tape data.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA.

Individual TFMC Pancakes Tested at 77K – found to be robustly stable and robustly self-protecting

Objectives: Verify HTS performance by pushing TFMC pancakes into saturation at 77K, comparing azimuthal current with model projections

- 16 turn single pancakes, LN_2 , I_{on} < 12kA
- Pushed well into saturation

Result:

- No risk of quench damage
- Current bypasses low Ic zones
- Large pancake surface area in $LN₂$ immersion accommodates dissipation at the highest current levels
- Low stored energy/mass => TFMC pancake is quench damage safe even if it is warmed up at full test current, open circuited

SPARC TFMC Operating at 40 kA, 20T
IEEE-CSC, ESAS and CSSI SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA. SPARC *– Validated HTS NI design for SPARC**

Objective 1: Demonstrate 20T on conductor in large-bore D-shaped coil using SPARC TF design*

 $O(90/04/24)$ $O(90/04/24)$ * Whyte, D.G., *et al.*, "Experimental Assessment and Model Validation of the SPARC Toroidal Field Model Coil," IEEE Trans on Applied Supercon 34 (2024) 1. –––––––––––––––––––––––

SPARC TFMC Operating at 32 kA, 16T
IEEE-CSC, ESAS and CSSI SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Presentation given at ASC 2024, Sept 2024, Salt Lake City, Utah, USA. SPARC *– found robustly stable, but not self-protected to sustained open circuit condition*

Objective 2: Test self-protection response to open-circuit fault.

Sequence:

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial current flow
- 3. Quench after ~ 110s

$\textit{SPARC}^{\textit{IEEE-CC, EAS and CSS, SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Present 2024. Sept 2024, Sept 2024. Salt Lake City, Utah, USA.}$ *open circuit condition*

Objective 2: Test self-protection response to open-circuit fault.

Sequence:

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial current flow
- 3. Quench after ~ 110s

Robust stability against quench

Quench occurs only after ~2.9 MJ is injected from sustained radial current flow with helium coolant turned off.

Key Point: Quench is caused by a facility fault not by flaw in NI coil design/construction

SPARC TFMC Operating at 32 kA, 16T – found robustly stable, but not self-protected to sustained open circuit condition

Objective 2: Test self-protection response to open-circuit fault.

Sequence:

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial
- 3. Quench after ~ 110s
- Normal Zone Formation
- **Inductive Quench Cascade**
- "Copper Coil" Energy Dump

$\textit{SPARC}^{\textit{IEEE-CC, EAS and CSS, SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Present 2024. Sept 2024, Sept 2024. Salt Lake City, Utah, USA.}$ *open circuit condition*

Objective 2: Test self-protection response to open-circuit fault.

Sequence:

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial current flow
- 3. Quench after ~ 110s

Result:

- Normal Zone Formation
- **Inductive Quench Cascade**
- "Copper Coil" Energy Dump
- **Localized hot spot and 'radial cut' burn on 7 adjacent pancakes at lowest Ic locations**

PANCAKE 11

SPARC TF Model Coil @40kA

open circuit condition

PANCAKE 9

Sequence:

 $\textit{SPARC}^{\textit{IEEE-CC, EAS and CSS, SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Present 2024. Sept 2024, Sept 2024. Salt Lake City, Utah, USA.}$

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial current flow
- 3. Quench after ~ 110s

Result:

- Normal Zone Formation
- **Inductive Quench Cascade**
- "Copper Coil" Energy Dump
- **Localized hot spot and 'radial cut' burn on 7 adjacent pancakes at lowest Ic locations**
- **"Copper coil" Energy Dump not uniform on non-burned pancakes - melted solder**

Objective 2: Test self-protection response to open-circuit fault.

SPARC

$\textit{SPARC}^{\textit{IEEE-CC, EAS and CSS, SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Present 2024. Sept 2024, Sept 2024. Salt Lake City, Utah, USA.}$ *open circuit condition*

Objective 2: Test self-protection response to open-circuit fault.

Sequence:

- 1. Open-circuit at 32kA, 20K
- 2. Coil warms up (~26kW) from radial current flow
- 3. Quench after ~ 110s

Result:

- Normal Zone Formation
- **Inductive Quench Cascade**
- "Copper Coil" Energy Dump
- **Localized hot spot and 'radial cut' burn on 7 adjacent pancakes at lowest Ic locations**
- **"Copper coil" Energy Dump not uniform on non-burned pancakes - melted solder**
- **5 of 16 pancakes unaffected. Retested with no Ic loss, despite cascade currents > 60kA**

$\textit{SPARC}^{\textit{IEEE-CC, EAS and CSS, SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 57, Oct 2024. Present 2024. Sept 2024, Sept 2024. Salt Lake City, Utah, USA.}$ *open circuit condition*

Objective 2: Test self-protection response to open-circuit fault.

Simulation: Formation of Radially Extended Normal Zone At Location of Minimum Ic, 30kA TFMC

What can be done to quench protect high Store (Septence) SPARC **SPAF** *energy NI coils?*

- Fully exploit NI coil's robust stability against quench
	- Operate in deeply stable regime to provide margin for subsystem faults (e.g., loss of terminal current, loss of thermal insulation)
	- Have high reliability subsystems
- 2. Incorporate the means to actively trigger a quench cascade on demand
- 3. Ensure uniformity in EM and thermal response across coil once quench cascade is initiated

Informed by quench response of TFMC, such strategies have been implemented for quench protection of SPARC's TF magnet.

Q: "Are REBCO NI Magnets Really Self-protected?"

A: Depends on the application

- At low stored energy per conductor unit cell mass, they can be.
- But when pushed to the limit (e.g., in large bore fusion energy magnets), they are not, in general.

End