## Overcoming Challenges in Utilizing High-Performance REBCO Tapes in Ultra-high Magnetic Field Applications

Venkat Selvamanickam

Department of Mechanical Engineering Advanced Manufacturing institute Texas Center for Superconductivity University of Houston, Houston, TX, USA



## Acknowledgments

- M. Paidpilli, C. Goel, Y. Li, S. Chen, R. Jain, G. Majkic, R. Schmidt, A. H. Rahmati, P. Sharma, N. Castaneda Quintero and F. Hernandez of **University of Houston**
- E. Galstyan and K. Kadiyala of AMPeers\*
- Support for high-field measurements at NHMFL provided by J. Jaroszynski and D. Abraimov
- Funding: DOE Advanced Manufacturing Office, DOE Office of High Energy Physics, NAVSEA STTR, ARPA-E



## Outline

- Advanced MOCVD for high-current REBCO tapes for high-field applications.
- How to achieve high in-field performance over long lengths?
- Technical Roadmap for large-scale commercialization of REBCO.





# Advanced MOCVD for high-current REBCO tapes for high-field applications



REBCO tape price has decreased only ~ 2.5x in the last 11 years; 4x higher than that predicted in 2010 CCA





2010 CCA → REBCO price: \$360/kA-m; 2021 price projected in 2010: \$35/kA-m Actual 2021 REBCO prize: \$150 – 200/kA-m

## High $I_c$ REBCO is the best way to achieve drastic cost reduction

- Most ultra-high field applications use stacks of many REBCO tapes: ~ 100 tapes/cable for compact fusion
- With higher performance, less tape needed
  - -3-4 GA-m for commercial fusion device.
  - 20,000 km of 'standard tape' needed.
  - But with  $I_c$  5x standard tape, need 4,000 km.
  - Less tape  $\rightarrow$  less burden on tape production
- With high I<sub>c</sub> tape, J<sub>e</sub> will meet application requirements in formats that use large nonsuperconductor cross section like round wires.
- Fewer high *I<sub>c</sub>* tape strands → more compact, more flexible round wires



HTS STACK

SOLDER



STAINLESS STEEL JACKET

COPPER JACKET



**VIPER** cable



REBCO cables use substantial copper content; current sharing can be engineered to safely use high current REBCO tapes

## Advanced MOCVD for high I<sub>c</sub>, low-cost, high-yield manufacturing of REBCO tapes

- Advanced MOCVD reactor addresses all deficiencies of current MOCVD production tools designs
  - Excellent control of tape temperature by Direct tape heating and Direct tape temperature monitoring  $\rightarrow$  5µm thick films & 10x BZO density
  - Low volume, laminar flow reactor  $\rightarrow$  5x precursor-to-film conversion efficiency



## High *I<sub>c</sub>* thick film REBCO tapes by Advanced MOCVD



IEEE Trans. Appl. Supercond. 29, 6600905 (2019)

- No change in in-plane and out-of-plane texture even up to 5 µm thick films
- Approx. 300 A/ $\mu$ m-thickness and  $J_c$  is almost constant with thickness
- $I_c^{sf}(77K) = 1660 \text{ A}/12 \text{ mm}$  (record high current in single time deposition in a MOCVD process)  $J_c^{sf}(77K) = 3 \text{ MA/cm}^2$



## In-field J<sub>c</sub> at 4.2 K tailored by (Ba+M)/Cu content; BZO/BHO nanocolumns and REO depend on Ba content



UNIVERSITY of **HOUSTON** 



With increasing Ba content, interruptions to BMO nanorods decrease and lift factor in  $I_c$  at 4.2 K, 13 T increases. RE<sub>2</sub>O<sub>3</sub> intensity in 2D X-ray Diffraction decreases with increasing Ba content



## In-field J<sub>c</sub> at 4.2 K tailored by (Ba+M)/Cu content; BZO/BHO nanocolumns and REO depend on Ba content





UNIVERSITY of **HOUSTON** 

Supercond. Sci. Technol. 33 074007 (2020)

rSU

## 4+ μm thick film REBCO tapes made by Advanced MOCVD exhibit very high critical currents in high fields at 4.2K



Maximum pinning force of 4  $\mu$ m film tape = 1.9 TN/m<sup>3</sup> (B  $\perp$  tape)

Supercond. Sci. Technol. 33, 07LT03 (2020)



*I<sub>c</sub>* of UH REBCO @ 4.2 K, 20 T = 1,836 A
3.19x best commercial (PLD) REBCO tape at 20 T
5.27x best commercial MOCVD REBCO tape at 15 T





# How to achieve high in-field performance over long lengths?



## Gd and Y dissolve in BZO: BZO is actually a solid solution Ba<sup>2+</sup>(Zr<sup>4+</sup><sub>1-z</sub>RE<sup>3+</sup><sub>z</sub>)O<sub>3-δ</sub> perovskite



Even with a constant 15% Zr, by varying the Ba content, BZO can be tuned from 5 to 23%, and the linear density of  $RE_2O_3$  precipitates from 18 to 1  $\mu$ m<sup>-1</sup>.



Ba compositional control is critical to achieve uniform high in-field  $I_c$  in long tapes



## Compositional control of REBCO film important for high in-field $J_c$





Non-destructive method needed for rapid evaluation of REBCO film composition during manufacturing of long tapes

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation MS-2 was given at the virtual CCA 2021, October 11-15, 2021.

Normal Ba

### UNIVERSITY of **HOUSTON**

#### **2D-XRD:** Rapid non-destructive method to evaluate **REBCO film composition** BZO REBCO BZO REBCO 101 103 101 103



- Streaking of BZO (101) peak towards REBCO (103) peak
- C-axis lattice mismatch between REBCO and BZO • decreases with increasing Ba/Cu composition





## 2D-XRD: Rapid non-destructive method to evaluate REBCO film composition





BZO (101) streak deviation angle good indicator of BZO nanocolumn size and film composition



## In-line 2D XRD built and installed in pilot Advanced MOCVD tool for REBCO film quality monitoring & control





In-line 2D-XRD in MOCVD manufacturing tool for real-time measurement of BZO streak deviation angle, REBCO peak intensity, REO peak intensity  $\rightarrow$  to achieve consistent in-field performance

## Continuous 2D-XRD data acquisition along tape length during REBCO film deposition in Advanced MOCVD



## Integrated intensity of REBCO, BZO, REO peaks along tape length continuously during REBCO film deposition





2D-XRD measurement along 10 meter tape length

## BZO (101) peak streak angle measured along tape length continuously during REBCO film deposition



Next: Use real-time 2D-XRD data to control deposition process for uniform microstructure  $\rightarrow$  uniform performance

## Performance of 25 m long Advanced MOCVD tapes



- Measured Lift Factor in  $I_c @ 4.2 \text{ K}$ , 13 T = 4.71
- alpha value @ 4.2 K = 0.772
- Projected Lift Factor in  $I_c @ 4.2 \text{ K}, 20 \text{ T} = 3.41$





Lift factor measured at one end of tape may not be same over 25 m

## Reel-to-reel in-field I<sub>c</sub> measurements of long tapes at 65 K by non-contact Scanning Hall Probe Microscopy (SHPM)





In-field  $I_c$  at 65K measured by reel-to-reel SHPM can be used to determine  $I_c$  over entire tape length in high magnetic fields at 4.2 – 20 K using the discovered strong correlations.

Reel-to-reel I<sub>c</sub> measurements at 65 K, 2 T and 4 T over 25 m = long tape 1 mm intervals by reel-to-reel SHPM





*Expect more I<sub>c</sub> non-uniformity in high fields at* 4.2 K and 20 K than that measured at 77 K, 0 T

| <i>I<sub>c</sub></i> @ 4.2 K, 20 T        | Uniformity over 25 m |    |
|-------------------------------------------|----------------------|----|
| Based on <i>I<sub>c</sub></i> @ 77 K, 0 T | 5.9%                 |    |
| Based on <i>I<sub>c</sub></i> @ 65 K, 4 T | 14.2%                | 24 |

## Decrease in in-field I<sub>c</sub> in R2R SHPM predictable by decreasing REO peak intensity and increasing BZO streak angle in in-line 2D-XRD



- Creating a feedback for process control: Machine learning based predictive model using LSTM recurrent neural network (RNN)
  - <u>Goal</u>: Using information on critical current in *earlier* part of the tape and manufacturing process parameters of *later* parts of the tape, predict the critical current of the *later* part of the tape.



- A window size of 500 time steps (roughly 40 cm of tape) used to create the dataset.
- Training done on dataset from 39 long HTS tapes. 32 process parameters used to create and train LSTM RNN network.



## Training with only one process parameter does not enable the network predict critical current



Training using critical current and only one process parameter as inputs of the RNN



## Training with all process parameters enables the network predict critical current



<u>Next</u>: Use in-line 2D-XRD data and machine learning for real-time prediction of tape quality in REBCO tape manufacturing



## **Technical Roadmap for large-scale commercialization of REBCO**



#### New built-in features

- Defect tolerance
- Higher yield strength (2.5 GPa)
- Superior flexibility
- Quench detection
- Lower losses

High-throughput manufacturing (5,000 km/year/tool)

#### Large area deposition

- 2 m<sup>2</sup> deposition zone
  - (advantage of MOCVD)

