High performance iron-based superconducting wires: fabrication and properties

Yanwei Ma, Xianping Zhang

Institute of Electrical Engineering,
Chinese Academy of Sciences,
Beijing, China

1. Background on iron-based superconductors (IBS)

2. Development of high J_c PIT 122 IBS wires

3. Application property of the IBS wires

4. Recent advances in long-length wires, joints, pancake & racetrack coils, cables

5. Conclusions and outlook
Iron-Based Superconductors (IBS)

Prof. Hideo Hosono 2008

Varieties of Iron-based superconductors (IBS)

High performance:
- High T_c~55 K
- High H_{c2}~100 T, H_{irr} very close to H_{c2}
- Small anisotropy, γ<2
- High J_c~6 MA/cm2 & J_c-depairing~160 MA/cm2

High T_c~55 K

At 20 K, the H_{c2} can be >70 T where IBS outperform both MgB$_2$ and Bi-2223.

<table>
<thead>
<tr>
<th>Bi-system</th>
<th>YBCO</th>
<th>IBS 122</th>
<th>MgB$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>50-90</td>
<td>5-7</td>
<td>1-2</td>
</tr>
<tr>
<td>ξ_{ab}</td>
<td>2.3</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Gi</td>
<td>10^{-2}</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>
The cost of IBS wire can be four to five times lower than that of Nb$_3$Sn, making it more expensive than NbTi, but with much higher critical parameters than Nb$_3$Sn.

From a practical point of view, IBS are ideal candidates for applications.

High J_c of IBS wires: Very weak field dependence in high field region

I_c data of Sr-122 tape, measured in 2013 at HFLSM, Sendai

122 IBS wire: Large J_c, at $B > 20T$
IBS have potential for high-field applications

- Working Temp: 4.2 K – 30 K
- ITER: 10 m, 15 T (4.2 K)
- Accelerator (20 T)
- MRI (14 T)
- >1GHz NMR
- >23.5 T

Development of high-performance conductors is essential

J. Shimoyama, SuST 27 (2014) 044002
What makes a good superconducting wire?

Characteristics:

- **Intrinsic**
 - Low anisotropy
 - High J_c, H_{c2}
 - Chemically stable

- **Extrinsic**
 - Low AC loss (Multifilament)
 - Thermal stability (Thermal quench)
 - Good mechanical strength (Lorentz force)
 - Scalable production (powders & wires)
 - Small aspect ratio: round wire
 - Low cost—Conundrum for HTSC

Commercial superconducting wires and tapes

- NbTi
- Nb$_3$Sn
- MgB$_2$
- Bi$_2$2212
- Bi$_2$2223
- YBCO
Fabrication process for IBS wires and tapes

(Powder-in-tube method)

- Low cost, simple deformation process

122 PIT wires are expected to be much cheaper than BSCCO conductors:

1. Many types of sheaths of Ag, Cu, Fe, and Ag-based composites (Ag/Fe, Ag/Cu, Ag/stainless steel) can be employed.
2. For BSCCO, Ag is the only material that is inert to the BSCCO superconductor and permeable to oxygen at the annealing temperature.
Misorientation dependence of J_c:
GBs are less detrimental to current flow

- $\theta_{GB} \approx 3^\circ$ vs 122 IBS $\theta_c \approx 9^\circ$ (The critical angle of GBs)
 - Misorientation angle of IBS grains < 9° usually do not impede the J_c flow
 - Highly textured templates are not necessary: *PIT and low-cost CCs are possible*

M. Putti presented at EUCAS-2015

Outline

1. Background on iron-based superconductors (IBS)
2. Development of high J_c PIT 122 IBS wires
3. Application property of the IBS wires
4. Recent advances in long-length wires, joints, pancake & racetrack coils, cables
5. Conclusions and outlook
High J_c values were achieved in hot pressed (HP) Ba122/Ag tapes

At 4.2 K, 10 T: $J_c \sim 1.5 \times 10^5$ A/cm2, $I_c = 437$ A, $\gamma = 1.37$

18 T: $J_c \sim 10^5$ A/cm2

27 T: $J_c \sim 5.5 \times 10^4$ A/cm2

Latest: Record J_c of HP Ba122 tape = 1.81×10^5 A/cm2 at 4.2 K, 10 T

The grains are aligned along the c-axis, most of the misorientation angles are 5-20

No apparent in-plane texture was found
High-J_c Ba-122 HIP wires improved by GR+HIP

Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ powder → Ag tube

packing

groove rolling

Ba$_{122}$/Ag+Cu
groove rolling

HIP sintering

700 °C, 150 MPa, 4 hours

by enhancing the texture

Ba-122 round wire

4.2K

improved by ~ 5 times

present work

Pyon et al.(2018)

Liu et al.(2017)

Weiss et al.(2012)

mono-core wires

4.7×10^4 A/cm2

(4.2 K, 10 T)

Cu/Ag sheath

Ba-122 7-filament wires

3.3×10^4 A/cm2

(latest result)

tape-in-tube method

JMCC 11 (2023) 1460

2 times higher

Ba$_{122}$/Ag+Cu

Cu/Ag sheathed Ba-122 tapes with practical level J_c

$J_c (4.2 \text{ K}, 10 \text{ T}) = 1.1 \times 10^5 \text{ A/cm}^2$

➢ J_c exceeding 10^5 A/cm^2 for the first time for Cu/Ag sheathed tapes
➢ A scalable and cost-effective fabrication route!

Liu et al., *Sci. China Mater.* 64 (2021) 2503
Comparison of hysteresis loops for HP and HIP 122 tapes

Hot Pressing

- **HP Ba-122/Ag**
 - Critical Current (I_c) vs. Magnetic Field (B)
 - $J_c = 1.8 \times 10^5$ A/cm² (10 T)
 - Fraction with $\theta < 10^\circ$: ~42%

Hot Isostatic Pressing

- **HIP Ba-122/Ag/Cu**
 - Critical Current (I_c) vs. Magnetic Field (B)
 - $J_c = 1.1 \times 10^5$ A/cm² (10 T)
 - Fraction with $\theta < 10^\circ$: ~10%

Properties

- **HP Temperature (880°C)**
 - Grain size: ~3 μm
 - Lotgering orientation factor F: 0.87
 - Hv: ~140

- **HIP Temperature (740 °C)**
 - Grain size: ~0.5 μm
 - Lotgering orientation factor F: 0.46
 - Hv: >230

Remarks

- Much room for the J_c improvement

Courtesy: C. Senatore

Bonura et al., *SuST* 33 (2020) 095008

High J_c values were achieved in Stainless Steel (SS)/Ag/Ba122 tapes, due to higher core density ($H_v \sim 230$), the J_c is 8×10^4 A/cm2 at 4.2 K and 10 T.

J_c distribution of 1.08 m SS/Ag/Ba-122 tape

◆ 1.08 m long SS/Ag/Ba122 tape shows good J_c uniformity, the lowest J_c is over 7×10^4 A/cm2.

High n value:
@10 K, 10 T, $n \sim 47$

Dong et al., *IEEE TAS* 29 (2019) 7300504
Critical current density of SS/Ag composite tapes

Stainless steel/Ag/Ba$_{1-x}$K$_x$Fe$_2$As$_2$ tapes were made with a wide doping range (0.25 ≤ x ≤ 0.6)

- The highest $J_c^{\text{trans}} > 0.1 \text{ MA/cm}^2$ at $x = 0.458$ @ 4.2 K, 10 T
- Grain boundary transparency parameter $\varepsilon = J_c^{\text{inter}}/J_c^{\text{intra}}$ continuously increases with doping
- Grain boundaries are contaminated by FeAs, doping enhances proximity effect and inter-grain J_c.

The state-of-art high J_c tapes still contain many contaminated GBs which disconnect the Ba122 grains. The J_c can be largely improved if we can eliminate these secondary phases.
NEXT STEP for iron-based PIT wires?

Dirty grain boundaries

- $J_{c,\text{inter}} \approx 0.1 \text{ MA/cm}^2$
- $J_{c,\text{intra}} \approx 1 \text{ MA/cm}^2$

Clean grain boundaries

- $J_{c,\text{inter}} \approx 1 \text{ MA/cm}^2$
- $J_{c,\text{intra}} \approx 1 \text{ MA/cm}^2$

- Most GBs are contaminated by FeAs, largely limiting intergrain current transport

- **Slightly overdoping is a good way to enhance J_{c}^{trans}**

- Clean GBs without FeAs phase is always the best choice!

- $\varepsilon \sim 100\%$ may be achieved in the **GBs without FeAs** (misorientation angle $\theta < 9^\circ$)

But how to remove FeAs?
New record high J_c in PIT SS/Ag Ba122 tapes

Special technique to remove FeAs wetting phase, details will be published soon.

- High J_c @ 4.2 K:
 - $J_c \approx 2.2 \times 10^5$ A/cm2 @ 10 T
 - $J_c > 10^5$ A/cm2 even @ 30 T
- High mechanical strength
- Low material cost
- Easy fabrication process scalable to long length tapes

Very promising to be used in high field magnets!

No published data
Strategies to further improve J_c in 122 PIT wires

◆ To further reduce secondary phases at GBs

◆ To improve the texture degree especially increase the fraction of misorientation angle $<9^\circ$.

◆ To further increase flux pinning force
 (1) decrease grain size to make more GBs,
 (2) increase point pinning sites, e.g. irradiation or the introduction of nano-particle inclusion.

Neutron Irradiation of Ba122 Single Crystals

Courtesy: M. Eisterer

巴122 薄带

Courtesy: M. Bonura & C. Senatore

Outline

1. Background on iron-based superconductors (IBS)
2. Development of high J_c PIT 122 IBS wires
3. Application property of the IBS wires
4. Recent advances in long-length wires, joints, pancake & racetrack coils, cables
5. Conclusions and outlook
122 tapes – Strain properties

The \(I_c \) of 122 tapes exhibits less strain sensitivity than that of the \(\text{Nb}_3\text{Sn} \), which is important for ITER application.

Reversible critical currents under a large compressive strain of \(\varepsilon = -0.6\% \)

Almost no \(J_c \) degradation under a large compressive strain of 0.6%

Liu et al., SuST 30 (2017) 07LT01

Yao et al. 2017 SuST 30 075010
Bending test of 122 IBS tapes

---Heated samples

122/Ag IBS tapes

- Critical bending diameter is 4.4 cm for Sr-122/Ag tapes in thickness of 0.3 mm.
- For high strength Ba-122 tapes, the bending diameter is even smaller, only of 2~3 cm.

Cooperated with Prof. Huajun Liu in IPP-CAS

SUS/(Ag-Sn)/Ba-122 tapes

Coz op erated with Prof. Huajun Liu in IPP-CAS

Bending diameter of 7-filament 122/Ag tapes

By courtesy of Prof. Q. Xu at IHEP-CAS

Ratio = I_c (bending) / I_c (pristine~135A)

- Good retention above Φ15 mm
- Rapid decrease of I_c in the D10 sample

<table>
<thead>
<tr>
<th>Ic@4.2K/10T</th>
<th>D10</th>
<th>D15</th>
<th>D20</th>
<th>D25</th>
<th>D30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>90</td>
<td>113</td>
<td>114</td>
<td>119</td>
<td>125</td>
</tr>
<tr>
<td>Group 2</td>
<td>70</td>
<td>110</td>
<td>118</td>
<td>120</td>
<td>124</td>
</tr>
<tr>
<td>Group 3</td>
<td>95</td>
<td>107</td>
<td>110</td>
<td>121</td>
<td>125</td>
</tr>
<tr>
<td>Average Ic (A)</td>
<td>85</td>
<td>110</td>
<td>114</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Ratio (%)</td>
<td>63.0%</td>
<td>81.5%</td>
<td>84.4%</td>
<td>88.9%</td>
<td>92.6%</td>
</tr>
</tbody>
</table>

Li et al., IEEE TAS 32 (2022) 7300304
The AC loss for 7-core tapes reduced by ~50% at 20 K, due to the negligible eddy current losses by using more resistive AgSn alloy outer sheath.

Due to highly conductive Ag sheath, large eddy current losses (ecl) was observed for single-core tape.

\[Q_{1\text{-Ba}122/\text{Ag} - \text{ecl}} = Q_{1\text{-Ba}122/\text{Ag}} - Q_{\text{ecl Ag-99\%}} \]

Kovac et al., *Cryogenics* 116 (2021) 103281

The difference observed between the extracted \(Q_{\text{ecl}} \) (red lines) and those measured for etched Ag (green lines) could be attributed to different \(J_c \)s due to sample degradation.
Thermal properties are dominated by the sheath materials

The thermal conductivity ranges from 1 to 1000 W/m K by adjusting the sheath materials

@4.2 K: Cu/Ag: 400 W/m K at 0 T; >100 W/m K at 9 T--magnets

SS/Ag: ~10 W/m K-- current leads

Atoms diffusion between different sheathes and superconducting cores

J_c anisotropy of 122/Ag tapes

Awaji et al., *SuST* 30 (2017) 035018

Senatore et al., *SuST* 33 (2020) 095008

- The I_c in applied magnetic fields is slightly higher in the perpendicular field ($I_c\perp$) than in the parallel field ($I_c\parallel$).
- The anisotropy ratio ($\Gamma = I_c\perp/I_c\parallel$) is quite low, less than 2, very good for applications.

Figure:

- Graph showing I_c vs. B at 4.2 K for Sr122 (L1001) 2nd.
- $V_{tap} = 2.5 \text{mm} 4-13 \text{uV fit} 10 \mu\text{V criterion}$
- $I_c\parallel < I_c$ only at low temperature and fields

Graph 2:

- Graph showing $I_c\parallel/I_c$ vs. Temperature (K) with $B=10 \text{ T}$ and $B=19 \text{ T}$.
- ~ 2 for $B=10 \text{ T}$
- ~ 1.5 for $B=19 \text{ T}$

At 20 K, the \(n \) value was over 30

At 4.2 K, 10 T, the \(n \) value was over 20
Outline

1. Background on iron-based superconductors (IBS)
2. Development of high J_c PIT 122 IBS wires
3. Application property of the IBS wires
4. Recent advances in long-length wires, joints, pancake & racetrack coils, cables
5. Conclusions and outlook
Powder-In-Tube 122 tapes: Long length

100 m long, 7-core Ba122 tapes are fabricated by rolling process, and the J_c is continuously improving.

Recently, the J_c of long wires has been increased above 6×10^4 A/cm2 @ 4.2 K, 10 T by optimizing fabrication process.

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000)
High-performance joints were developed for IBS tapes, with a high critical current ratio (CCR) of 95%.

The IBS joint was tested in a closed-loop coil, showing a low resistance of 2.7×10^{-13} Ohm.

Meet the application requirements in persistent mode MRI magnets.
Powder-In-Tube 122 tapes: Pancake coils

New IBS pancake coils have been made, measured up to very high fields reaching 62 A @ 4.2 K, 30 T

Qian et al., *Physica C* 580 (2021) 1353787
IBS Racetrack coils made using the 100 m long tapes

7-filaments IBS 100-m long tapes

\[J_c(\text{coil}) = 87\% \ J_c(\text{short tape}) @ 10 \ T \]

Tapes’ Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of IBS tape</td>
<td>0.33</td>
</tr>
<tr>
<td>Width of IBS tape</td>
<td>4.5</td>
</tr>
<tr>
<td>Non-SC/SC ratio</td>
<td>5</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of coil winding</td>
<td>57.6</td>
</tr>
<tr>
<td>Width of coil</td>
<td>235.2</td>
</tr>
<tr>
<td>Width of coil winding</td>
<td>4.66</td>
</tr>
<tr>
<td>Length of straight part of coil</td>
<td>200</td>
</tr>
<tr>
<td>Thickness of SS tape</td>
<td>0.3</td>
</tr>
<tr>
<td>Turns</td>
<td>96</td>
</tr>
<tr>
<td>Bending radius</td>
<td>60</td>
</tr>
</tbody>
</table>

✓ Metal-as-insulation technique
✓ Wind & react > 800 °C
✓ \(I_c \approx 65 \, \text{A} \) @ 4.2 K, 10 T

87 % of the short sample at 10T

Very promising for next generation accelerator!

Zhang et al., *SuST* 34 (2021) 035021
First Tesla class IBS coil for high field application

✓ Six double pancake coils
✓ Self field 1.03 T @ 4.2 K, 20 T

The poorest IBS double pancake coil still had a critical current of about 84 A at the background field of 20 T
Outperformed all previously reported IBS coils

Ding et al., SuST, 36 (2023) 11LT01
A high J_c of 71 kA/cm2 ($J_c \sim$67 A) at 4.2 K, 10 T was measured in short segments picked up from the mono-core coil.

Powder-In-Tube HIP 122 wires: Coils

- 17~18 m mono- and 7-core Ba-122 wires
- Wires covered by glass sleeve are wound on SS bobbins
- HIP process is applied (Wind & React)
- Rapid increase in dissipation starts above 53 and 47 A for mono- and 7-core wires
- I_c of the whole coil wires are 30 and 18 A in self-field, corresponding $H = 1.75$ and 1.0 kOe for mono- and 7-core wires

Pyon et al., SuST 26 (2023) 015009
FeSe$_{0.5}$Te$_{0.5}$ coated conductor tape and coil

FeSe$_{0.5}$Te$_{0.5}$ single pancake coil (SPC) was fabricated and tested under magnetic field

- One-meter FeSe$_{0.5}$Te$_{0.5}$ coated conductor tapes can be fabricated via PLD
- The transport critical current of the SPC was 108 A at self-field and 17 A at 10 T, which is as same as the tape.

Wei et al., *SuST* 36 (2023) 04LT01
High Field Model Dipole Magnet: HTS Cable R&D

Cable design

The advantages of the designed cable:
- High current-carrying compacity
- Low dynamic loss
- High mechanical stability

IBS transposed cable reached 1.3 kA

REBCO transposed cable reached 2 kA

J. Wang et al, Superconductivity 3 (2022) 100019

Courtesy of Prof. Qingjin Xu
• The **engineering current density** of the long-length IBS still needs a significant improvement, to reach the similar level as ReBCO or Bi-2212 conductors.

• The **materials of stabilizer** should be shifted to copper or any other low-cost metals to realize the low cost of IBS.

• **Structure and fabrication methods** of IBS and corresponding coils should be further optimized to minimize the J_c degradation at high field and high stress.

• Many other issues like detailed magnetic and mechanical properties study of IBS, quench detection and protection of the IBS coils/magnets and etc.
Currently, a platform for the preparation of kilometer-scale long IBS wire is constructing in China.

Platform for kilometer-scale IBS wire

Equipment in place

Wire drawing machine

Tape rolling machine

HIP furnace

Plant layout, ~3000 square meters
Projects on IBS & Financial support

CAS funded “Science and Technology Frontier Research for the Next Generation Superconducting Magnet Applications” within the Strategic Priority Research Program of CAS

MoST funded “Next Generation High-field Magnet Technology Based on Iron-based Superconductor” within the National Key R&D Program of China

NSFC funded “High-performance Fe-based Superconducting Materials for High Magnetic Field Applications” within Major International (Regional) Joint Research Project
Conclusions

✓ Currently, iron-based wires and tapes are in the rapid development stage of research and development.

✓ Transport J_c of 122-type IBS wires has been significantly improved, and has surpassed the practical level at 4.2 K & 10 T with a maximum of 2.2×10^5 A/cm2.

✓ Transport J_c of 100-m-class Ba-122 IBS tapes was further improved to $> 6 \times 10^4$ A/cm2 at 10 T & 4.2 K.

✓ Highlights some remarkable advances of IBS relevant to practical applications, including superconducting joints, cable, the first IBS inserted coils and racetrack coils.

✓ We believe that Fe-based wires are very promising for applications in high magnetic fields, e.g. >20 T at 4.2 K or >10 T at 20-30 K.
Thank you for your attention!

From a movie: Avatar