

Understanding In-Field Performance of REBCO Conductor with Artificial Pinning Centers by Scanning Raman Spectroscopy and 2D-XRD

Goran Majkic

Department of Mechanical Engineering Advanced Manufacturing Institute Texas Center for Superconductivity University of Houston, Houston, TX, USA

Tuesday, Jul 11, 2023 10:40-11:00 AM (20 min) Room 318

M2Or1B: Latest Development in Flux Pinning & Critical Current - REBCO I CEC-ICMC Conference, Jul 9 – 13, 2023, Honolulu, HI

Collaborators:

Venkat Selvamanickam, Chirag Goel, Nathaly Castaneda - University of Houston

Andre Mkhoyan - University of Minnesota

Huikai Cheng, Lee Pullan, Dan Gostovic - Thermo-Fisher Scientific

Funded by: DE-SC0016220 U.S. Department of Energy, Office of Science – High Energy Physics DE-AR0001374 from Advanced Research Projects Agency – Energy.

UNIVERSITY of HOUSTON Background

Strong in-field performance can be achieved by combining thick (2-4 µm) REBCO films with optimized BMO pinning centers

- Pinning force plateau of 2 TN/m³ at 4.2 K B>5T, B||c •
- Near-identical performance between 15% Zr and 15% Hf
- At Bllab, near-linear increase in Fp up to 31.2 T
 - What determines equilibrium nanorod diameter and density?
- How to quickly evaluate pinning center density over long lengths?

Supercond. Sci. Technol. 33 (2020) 07LT03 (8pp)

Background

Performance at (77K, 0T) is not indicative of in-field performance at low temperatures and high fields

What influences the large scatter observed, regardless of deposition technique?

Can we determine performance at (B,T) of interest quickly and non-destructively?

TEM – Nanorod Self-Assembly: Scenario 1

TEM – Nanorod Self-Assembly: Scenario 2

Yellow – peak pair (Ba-RE REBCO columns) Cyan – peak pair (Cu REBCO columns)

White – peak pair (Ba BZO columns)

Classify as I-0 type:

(number of antiphase lines or missing unit cells in x and y directions)

10

Minimization of Mismatch strain:

 $a_{\rm M}$ and $a_{\rm N}$ - lattice parameters (matrix and nanorod)

 $k = a_M/a_N$

Matrix hole M unit cells Nanorod N = M - P unit cells

Mismatch strain:

$$\epsilon = \frac{M}{M - P}k - 1$$

Bottleshape modulation in BZO diameter: from I-I to II-II back to I-I

Nanorods assume discrete sizes: Bimodal Distribution of Nanorod Diameter

a.) nominal 25% Zr b.) nominal 11% Zr

Amount of dopant alone does not determine nanorod density.

Nanorod type is important

Dopant amount alone does not control amount of nanorods (#2):

RE elements dissolve in BaZrO₃!

This forms BaZr_{1-x}RE_xO₃

For every RE dissolved, we increase amount of $Ba(M,RE)O_3$.

1 BaZrO₃ + y Ba + y RE = (1+y) Ba(Zr,RE)O₃

Where do excess RE and Ba come from?

Dopant amount alone does not control amount of nanorods

Dopant amount alone does not control amount of nanorods

Where do excess RE and Ba come from?

2.) Consume stacking faults:

124 stacking faults accommodate lattice mismatch along c direction.

3 REBCO(124) = 4 REBCO (123) + 1 RE + 2 Ba

Depletion of 124 will affect c-axis mismatch strain

Result: wide range of nanorod densities and in-field performances for same nominal amount of M dopant

All samples have 15% Zr addition (nominal).

Vary BZC content =>

Nanorods vary from <5% to ~23% (u.c. fraction)

Quick, nondestructive characterization of nanorod density and in-field performance is vital for both:

process control
conductor utilization

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October, 2023. Presentation given at CEC-ICMC, July 11, 2023, Honolulu, Hawaii, USA

Nondestructive Evaluation:

1.) 2D-XRD

 $\times 10^{8}$

15% Zr – low nanorod density

5.5

5.4

5.3

5.2

5.1

4.9

4.8

4.7

4.6

4.5

q_z [m⁻¹]

Inline Implementation: 2D-XRD

- At 4.2, 20 K from 2 T
 - At 30, 40 K from 5 T

Inline Implementation: 2D-XRD

Continuous inline measurement at feature extraction

Nondestructive Evaluation:

2.) Scanning Raman

Scanning Raman Capabilities Demonstrated for Defect Detection

NEXT: Can we characterize pinning center density?

Can we characterize pinning center density?

Strain: Tape Curvature vs O2+/O3- Raman Shift:

Higher nanorod density = higher residual strain = induced curvature

Can be detected via O2/O3- peak shift:

Strong linear correlation between measured curvature and Raman shift

Comparison with 2D-XRD on same samples

- REBCO c-axis lattice parameter increase with curvature and BZO(002) intensity.
- BZO *c*-axis bimodal, (4.23 and 4.17 Å)
 more 4.17 at higher curvature.
- REO intensity decrease with curvature
- Strong linear trend between BZO(002) intensity and Raman 02/03- shift.

Clear linear trend between BZO (002) integral and O2/O3- Raman shift:

Use Raman to evaluate nanorod density

Can Raman O2/O3- Predict Jc(B,T) and Retention $\rho(B,T)$?

Both Jc(B,T) and $\rho(B,T)$ vary widely over the selected samples

Can Raman O2/O3- Predict Jc(B,T) and Retention $\rho(B,T)$?

Cross Validation over a Large Data Set

Thank you

