Superconductivity
Global Alliance
ScGA

Superconductivity Global Alliance (ScGA)

Greener, Healthier, Prosperous and Sustainable Future

Special Session – 3LOr2B

Professor Ziad Melhem

Founder and CEO

Oxford Quantum Solutions Ltd., Oxford, UK

Date: 4th Sep 2023

Chairs of the Special Plenary Session

- Prof. Ziad Melhem (Oxford Quantum Solutions Ltd, Oxford, UK))
- Dr. Joe Minervini (Novum-Industria, MIT, IEEE-CSC/USA)

Presentations

- ScGA Overview Prof. Ziad Melhem (20 min)
- ScGA Strategic Roadmap of Grand Challenges Prof. Sastry Pamidi (FSU- Florida State University) Fusion, Energy, Power, and Transport (20min)
- ScGA -Strategic Roadmap of Grand Challenges in Healthcare Dr. Kathleen Amm (15 min)
- ScGA -Strategic Roadmap of Grand Challenges in Electronics and QIP Dr. D. Scott Holmes (15 min)
- ScGA -Strategic Roadmap of Grand Challenges in Science Discovery Dr. Mark Bird (15 min)

Panel Discussion

Panel Members

Superconductivity
Global Alliance
ScGA

- 1. Prof. Sastry Pamidi (FSU- Florida State University)
- 2. Dr. Kathleen Amm (FSU- Florida State University)
- 3. Dr. D Scott Holmes (IEEE-CSC)
- 4. Dr. Mark Bird (FSU- Florida State University)
- 5. Prof. Susannah Speller (The University of Oxford)
- 6. Dr. Klaus Schlenga (Bruker/Gauss Fusion)
- 7. Dr. Sergey Samoilenkov (Faraday Japan Factory)

Drivers – Four primary ones!

Superconductivity
Global Alliance
ScGA

Green Economy

Trend for

Current & Future

Economy

UN Sustainable
Development Goals
(17 in Total)

LTS with Cryogen Free solutions LTS for the Future HTS for the future
@ > 4 Kelvin

HTS for the Future

Greener, Healthier, More Prosperous, and Sustainable Future

Superconductivity Global Alliance **ScGA**

Superconductivity Global Alliance (ScGA) initiative

"Superconductivity has already enabled major advances and capabilities such as MRI, NMR, high magnetic field research, and high energy physics accelerators which otherwise would not be possible. In the future, superconductivity will provide a means towards zero-emission targets, for example by enabling fusion power, expanding usage of wind power, and facilitating zero-emission transportation, as well as enabling new technologies such as superconducting classical and quantum computing, water purification, new medical diagnosis and therapy tools, and new scientific breakthrough."

Superconductivity from the Frontier end to Mainstream technologies

- We wish to catalyse this process and fast-track development through an "Initiative for Superconductivity" towards a greener, healthier, more prosperous, and sustainable future.
- We propose the establishment of public and private partnerships leading to
 - National initiatives and private engagement (Funding and end users) to accelerate the development of superconducting solutions
- We propose to hold a <u>Superconductivity Summit</u> at the senior executive and decision-making level to adopt options for <u>funding superconducting solutions through public and private</u> <u>partnerships</u>.
- This ambitious initiative will require setting up formally a Superconductivity Global Alliance (ScGA) to
 - Facilitate the delivery of the promise of superconductivity.
 - Guide the development of roadmaps and white papers.
 - · Facilitate summit meetings.
 - Development of consortia on agreed grand challenges.
 - Commission impact analysis.

The ScGA Strategy and status update

Superconductivity
Global Alliance
ScGA

- Stage 1
 - Consult with senior experts on Superconductivity
 - Industry, National Labs, R&D at Universities
 - Establish an International Organising Committee
 - Establish conveners for Working groups on
 - WG1 Fusion
 - WG2 Industry, Energy, & Power
 - WG3 Transport
 - WG4 Healthcare
 - WG5 Electronics and quantum information processing
 - WG6 Science Discovery
 - WG7 Materials for Applications
 - Develop whitepapers targeting policymakers, public & and private funders, and big industry.

Stage 2 -

- Launch and publish white papers (EUCAS, MT28, and other events)
- Launch a Website In Progress
- Engage with stakeholders In progress
- Hold One-day events UK, EU, USA, Japan, South Korea
- Special session at ICSM Turkey (April 2024)
- Presentation at COST mtg in Belgrade (April 2024)
- Special session at ASC 2024 (USA)

Stage 3

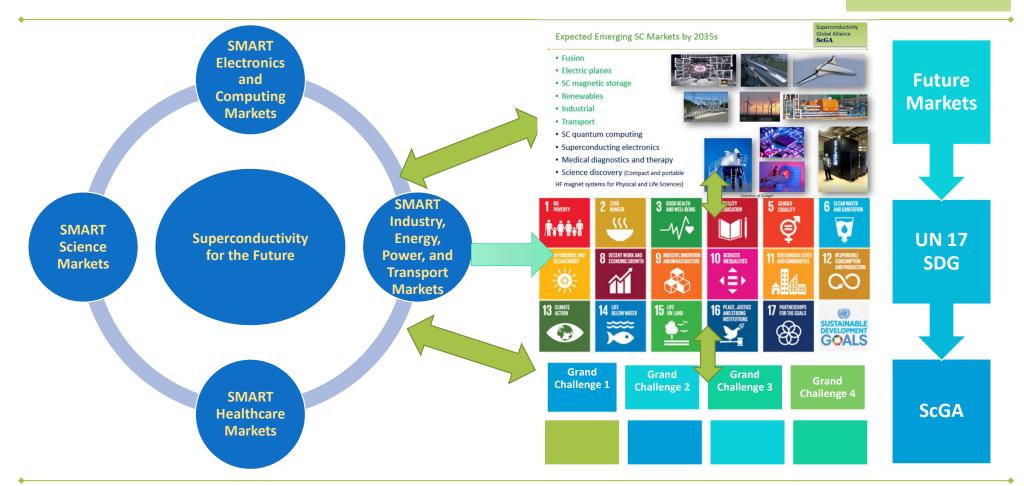
- Develop options for public and private funding
- Establish consortia for grand challenges
- Commission Impact Analysis
- Explore funding for Feasibility studies for grand challenges
- International Summit to Adopt Options

Stage 4

 Funding from public and private partnerships for superconductivity solutions

Zero carbon emission targets by 2050

- **Target 1** Develop Options for public and private partnerships to fund the proposed grand challenges.
- Target 2 Facilitate developing consortia/partnerships between the SC Community, National and Private funding, and Big industrials to address grand challenges.
- **Target 3** Superconducting Global Summit at the senior level to facilitate the proposed partnership.
- Target 4 Establish a National Strategy for Superconductivity towards the Global Strategy for Superconductivity
- Target 5 Adoption of identified options with public + private funding at
 National Levels for grand challenges ~ > 1 B Euro over 10 years to deliver on the
 Strategic Roadmap and the promise of SC for the future.



4 SMART Markets for the Future linked to Grand challenges

Superconductivity
Global Alliance
ScGA

Superconductivity
Global Alliance
ScGA

Current Status

02/10/2024 ziad.melhem@oxqsol.com Page 11

ScGA initiative Members (> 140) (Research and Industry)

Superconductivity Global Alliance **ScGA**

cea

Page 12

Industry (45) - Univ (50) - RI (45)

2 October 2024

Superconductivity
Global Alliance
ScGA

Grand Challenges and Strategic Roadmap

30 Challenges

02/10/2024 ziad.melhem@oxqsol.com Page 13

WP1- Fusion- Grand Challenges and strategic Roadmap (1 Challenge with 6 sub-requirements)

Superconductivity
Global Alliance
ScGA

Page 14

WG theme ambition	<4 Years	<7 Years	<10 Years	
The 10 – 100 – 1000 challenge Within 10 years to achieve 100 MW for 1000 seconds	 Design nearing, completion, Contracting for long lead items (buildings, conductors, vessels) is well underway. 	 Buildings complete, first components being delivered to (or manufactured on) site. 	Start of commissioning.	

- This is not a Fusion Power Plant...it's a demonstration that magnetic fusion CAN deliver energy
- > It STILL needs significant Tritium and Tritium handling capability
- > Two contenders so far, both report being well ahead of the schedule
 - ☐ Commonwealth Fusion Systems, HTS SC technology, and innovative magnets
 - BEST (ASIPP China), LTS SC technology and 'conventional' magnets (ITER style)

02/10/2024 ziad.melhem@oxqsol.com

WP2 – Power, Energy, and Industry - Grand Challenges and Strategic Roadmap (5 Challenges)

Superconductivity
Global Alliance
ScGA

Overarching Goal	<4 Years	<7 Years	<10 Years
Establish the technical and economic competitiveness, and necessity to achieve Net-Zero Targets of Superconducting Power, Energy, and Industry Applications	J	 Long-tern demonstration of SC Cables, Wind Generators to retire risks, showcase, and establish confidence 	 Operating superconducting substation with integrated multiple SC Devices

Five Grand Challenges of WG2: Superconducting Power and Energy Technologies

- 1. Regional power and energy centers for supporting the superconducting industry
- 2. Long-duration tests for superconducting power cables to retire risks
- 3. Establishing the baseline designs of a 25 MW superconducting wind generator
- 4. Establishment of standards for superconducting power and energy technologies
- 5. Showcase integration of power technologies in a superconducting substation

02/10/2024 ziad.melhem@oxqsol.com Page 15

WP3 - Transport – Grand challenges and Strategic roadmap (7 Challenges)

Superconductivity
Global Alliance
ScGA

Ambition	4 years	7 years	10 years
1. Fully-superconducting motor			Ready for commercial use in aviation
2. Fully-superconducting generator			Ready for commercial use in aviation
3. DC HTS cable	Demonstrated in lab	Ready for commercial use in aviation	
4. AC HTS cable	Demonstrated in lab	Ready for commercial use in aviation	
5. Cryogenic power electronics	Optimized for cryogenic usage	Required components demonstrated in a lab	Ready for commercial use in aviation
6. Liquid hydrogen storage and distribution	Safety criteria established	The prototype demonstrated in a lab	Ready for commercial use in aviation
7. System level integration	Design refinements based on component performances	Selection of optimal configuration and design	Ready for commercial use in aviation

WP4- Healthcare – Grand Challenges and Strategic Roadmap (4 Challenges)

Superconductivity
Global Alliance
ScGA

V	/G Theme Ambition	4 years	7 Years	10 Years
1.	Can MRI become ubiquitous for diagnostic imaging? MRI in remote locations with remote diagnosis	Potential for demonstrators with investment	Complete studies in developed world clinical environment	Product deployed globally
2.	How can advanced NMR accelerate drug discovery and personalized medicine?	Access to high field NMR 1GHz or above – expand number of systems – how to form a consortium to make it a facility for treatment	Clinical trials progressing	Personalized medicine – diagnosis of disease, personalized drug therapy
3.	Ultra-High Field MRI	1 st images at Iseult, initiation of various 11.7 and 14 T development programs	More 11.7 T systems deployed. Statement on the feasibility of >14- 16T designs. Roadmap for 20 T systems mapped out	More systems being started at 14T and above (cryogenics plant)
4.	MRI	NbTi, Nb3Sn, MgB2 Present performance of these conductors is sufficient for applications. Emergence of HTS and cryogen-free systems. Push on cryocoolers	HTS (reliable, quality, length over 1 km, joints), NbTi, Nb3Sn, MgB2 Increased performance at reduced cost desirable achievable for all HTS conductors. Higher perf. Cryocoolers	Fe based?, HTS, NbTi, Nb3Sn, MgB2 Phasing out of cryogen- dependent systems

SHo0

WP5 –Electronics and QIP Grand Challenges and Strategic Roadmap (ScE + QIP) (3 Challenges)

Superconductivity
Global Alliance
ScGA

- 1. Digital computer system
 - 100 EFlop/s performance
 - 200 TFlop/J computational energy efficiency
- 2. Machine learning system
 - Train on MNIST within 1 second and perform inference with > 90% accuracy
- 3. Quantum computing support system for 100,000 qubits
 - Provide control, readout, or quantum error correction support

Theme	Unit	4 years	7 years	10 years
High-performance computing (HPC)	EFLOP/s	0.1	20	100
	TFLOP/J	100	100	200
Neuromorphic computing	GSUPS	0.1	0.5	10
Quantum computing support system complexity	וו W	10	100	1000

SUPS: synaptic updates per second

SHo0 2024-09-03

Scott Holmes, 2024-08-31T02:19:33.333

WP6 - Discovery Science – Grand Challenges and Strategic Roadmap (9 Challenges)

Superconductivity
Global Alliance
ScGA

(All timelines are best-case scenarios with estimated durations after receipt of funding)

	AREA		GOALS	4 years	7 years	10 years
		1.	40 T SC Magnet	Design	Construction	Operation
	High- Magnetic	2.	60 T Hybrid Magnet	Conceptual Desig		ary Design
re	Field Research	3.	High field cryogen free magnets	HTS magnets >	>20T Cryogen-fre	ee HTS magnets >20T
1		1.	20 T Dipole Magnets	Design	> Short prototype	Long prototype
r	High-Energy	2.	SC RF cavities		Operational at	High gradient at
	Particle Physics	3.	20 T Large bore solenoid for muons		high gradients	high frequencies
	Titysics	4.	40 T SC for muons	Design and Tests	Prototype	Integrated Coil
		4.	40 1 3C 101 IIIuolis	Design and Tests	Prototype	Integrated Prototype
	Nuclear	1.	10 T Axion Detector	Design	Prototype 1	ntegrated Prototype
	Physics	2.	30 T Axion Detector	Design	Construction	Construction

WP3-Grand Challenge – HTS DC Cables Securing the Future Energy Grid – In progress

Superconductivity
Global Alliance
ScGA

Image Source: Datacenters.com

HTS DIRECT CURRENT CABLES AND CIRCUITS FOR Data Centers

End User

Solar farms, data centers, fusion nuclear reactors, radiation oncology, & more.

Milestones

- Year 1: Tradeoff study report with a recommendation for specified commercial offering.
- Year 2: Pilot demonstration creation and operational master plan.
- Year 3: Partner commitment agreements.

> End User Benefits

Energy and cost savings

> Status -

- Confirming Consortium members
- Engaging with End-users In progress
- Identifying funding source In progress
- Contact Ziad in the first instance if you are interested in being a partner

ScGA Website – To be released soon

Superconductivity Global Alliance **ScGA**

Superconductivity
Global Alliance
ScGA

Home About Us

Emerging Markets

Membership

Resources

Become a Member

A shortlist of ScGA Deliverables for 2024-2025

Superconductivity
Global Alliance
ScGA

- 1. Publish the INWARD version of WP in SUST (Sep 2024)
- 2. Publish a booklet of the OUTWARD version (Brief copy for reaching out to stakeholders) (Dec 2024)
- 3. Special session at ICSM 2024 (Turkey) (May 2024)
- 4. Special Session at ASC 2024 (USA) (Sep 2024)
- 5. Shortlist of grand challenges for Consortia Development (Sep-Dec 2024)
- 6. Identify funding for feasibility studies on agreed grand challenges (Dec 2024)
- 7. Release a website for ScGA (In progress) (Sep 2024)
- 8. Register the ScGA as a non-profit organization (Dec 2024)
- 9. Commission an IMPACT analysis (Dec 2024)
- 10. One-day meeting in Lisbon (Sep 2024 TBC)
- 11. Plan for the Global Summit (Apr 2025?)

Concluding remarks

Superconductivity Global Alliance **ScGA**

- 7 WPs are complete Will be released in the coming weeks!
- We are moving into stage 2 focusing on engagement with stakeholders (Events and 1-to-1 meetings) ... And planning for the Global Summit

Join the ScGA initiative

- As we move into an era where sustainability is paramount, superconductivity offers a chance to reshape our future.
- We invite researchers, innovators, policymakers, funders, and passionate individuals to join ScGA in this exciting journey towards a greener, healthier, more prosperous, and sustainable world.

For further details please get in touch with ziad.melhem@oxgsol.com or any member of the ScGA

- Acknowledgments
 - Thanks to ScGA IOC, Editorial Board, WG Conveners, and Members > 150
 - Thanks to IOP, BCC, IEEE-CSC, and ESAS, University of Oxford for sponsoring various activities

IOP Institute of Physics **Superconductivity Group**

International Organising Committee (IOC) and Editorial Board

Superconductivity
Global Alliance
ScGA

Member	Affiliation	Logo
Prof. Ziad Melhem	Oxford Quantum Solutions Ltd/UK	Orderd Quantum Solutions
Dr. Joe Minervini	Novum-Industria, MIT, IEEE-CSC/USA	NOVUM INDUSTRIA
Dr. Luca Bottura	CERN, ESAS/France/Switzerland	(ÉRR)
Prof. Susannah Speller	University of Oxford/UK	UNIVERSITY OF OXFORD
Prof. Lance Cooley	Florida State University, IEEE-CSC/USA	MAGLAB (C)
Prof. Venkat Selvamanickam	University of Houston/USA	UNIVERSITY OF HOUSTON
Prof. Stephen Gourlay	Fermi National Accelerator Laboratory, USA	☆ Fermilab
Dr. Anna Herr	Interuniversity Microelectronics Centre (IMEC)	·ımec
Dr. Kathleen Amm	Brookhaven National laboratory, IEEE-CSC, USA	Brookhaven National Laboratory
Dr Kazuhiko Hayashi	ISIS Chairman and CSSJ Executive Director	ISIS, 低温工学· 超電導学会 Cryogenics and Superconductivity Society of Japan.
Dr Cathy Foley	Australia's Chief Scientist	Independent

ScGA Working Groups, Convenors In total 32 Grand Challenges

Superconductivity
Global Alliance
ScGA

I. Applications			
1. SMART & Sustainable Industry, Energy, Power, and Transport (15 Grand Challenges)			
1a. Fusion (WG1) (5 Grand Challenges)	Prof. Chris Grovenor University of Oxford/UK	Dr. Mitchell Neil ITER/EU	
1b. Industry, Energy, Power (WG2) (5 Grand Challenges)	Dr. Parizh, Michael GE Research/ US GE Research	Prof. Sastry Pamidi Florida State Univ./US	Dr. Mohammad Yazdani Asrami University University of Glasgow/UK
1c. Transport (WG3) (5 Grand Challenges)	Prof. Marco Breschi University of Bologna/Eu	Dr. Loïc Quéval University of Paris/Eu	Dr. Arno Godeke Independent Consultant
2. SMART Healthcare (WG4) (4 Grand Challenges)	Dr. Amm, Kathleen Brookhaven National National Laboratory	Dr. Joe Minervini Novum/MIT/US	
3. SMART Electronics and quantum information processing (WG5) (4 Grand Challenges)	Dr. D. Scott Holmes IEEE/US IEEECSC	Prof. Giampiero Pepe ESAS/Eu SCOS MARCHETTO	Dr Anna Lees de Escobar Founder/CEO of Technology Vector Inc
 4. SMART Science discovery (WG6) (9 Grand Challenges) a. HEP/Nuclear science b. HF research & Astrophysics (Dark Matter) 	Dr. Mark Bird NHMFL/US MAGLAB	Dr. Luca Bottura CERN/Eu	Prof. Amalia Coldea University of Oxford/UK UNIVERSITY OF OXFORD
II. Materials for the identified applications (WG7)	Prof. Susannah Speller University of Oxford/UK UNIVERSITY OF OXFORD	Prof. Selvamanickam, Venkat University of Houston/US	

Editorial Board (EB)

Member	Affiliation	Logo
Dr. Joe Minervini	Novum-Industria, MIT, IEEE-CSC/USA	NOVUM IIII
Prof. Susannah Speller	University of Oxford/UK	UNIVERSITY OF OXFORD
Prof. Lance Cooley	Florida State University, IEEE-CSC/USA	MAGLAB (AS)
Prof. Stephen Gourlay	Fermi National Accelerator Laboratory, USA	‡ Fermilab
Dr. Cathy Foley	Australia's Chief Scientist, Australia	
Prof. Ziad Melhem	Oxford Quantum Solutions Ltd/UK	QS Oxford Quantum Solutions

ScGA Proposed Activities

Superconductivity
Global Alliance
ScGA

- Develop a Global Superconductivity Strategy to facilitate the development of a National Superconductivity Strategy.
- Develop public and private partnerships with Decision Makers/Funders and Big Industrials
 - 1. White paper on grand challenges (Delivered by the ScGA)
 - 2. Strategic roadmap for 10 years directly linked with the SDGs including potential funding required (Delivered by the ScGA)
 - 3. One-day events (UK, USA, EU, Japan, South Korea, ?)
 - 4. Global Summit to adopt options.
 - 5. Mechanisms for Raising Awareness of the Potential of Superconductivity
 - 1. Aim to present the SC initiative at selected International forums, e.g.
 - 1. World economic forum Davos (Jan 2024?)
 - 2. COP29(Nov 2024?)
 - 3. Doha Forum (Mar 2024 ?)
 - 4. Others?
 - 2. Establish regular communication channels
 - 3. Focused market research on grand challenges
 - 6. Establish a mechanism for sustaining the initiative

