Quantum Sensing with superconducting qubits for Fundamental Physics

Roberto Moretti

roberto.moretti@mib.infn.it On behalf of the **Qub-IT** collaboration

16th Workshop on Low Temperature Electronics

Low-mass Dark Matter

\sim	
\bigtriangledown	ub-IT

Axion

Dark Photon

Model

Would solve the strong CP problem.

Kinetic mixing with the EM field

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \theta \frac{g^2}{32\pi^2}F^{\mu\nu}\tilde{F}_{\mu\nu} + \bar{\psi}(i\gamma^{\mu}D_{\mu} - me^{i\theta'\gamma_5})\psi$$

- Single-photon conversion is expected (inverse Primakoff).
- Strong magnetic field required to boost conversion.

 $\mathcal{L} = -\frac{1}{A} F^{\prime\mu\nu} F^{\prime}_{\mu\nu} + \frac{1}{2} m^2_{A^\prime} A^{\prime\mu} A^\prime_{\mu} + \epsilon e A^{\prime\mu} J^{EM}_{\mu}$

Roberto Moretti - University of Milan Bicocca - INFN Milan Bicocca

Transmon as QND detection platforms

Quantum Non-Demolition

The interaction between Dark Matter candidates and EM field leads to a photon deposited in a storage cavity.

$$\widehat{\mathcal{H}} = \omega_r a^{\dagger} a + \frac{1}{2} (\omega_q + 2\chi a^{\dagger} a) \widehat{\sigma}_z$$
Photon-dependent
precession term

<u>10.1103/PhysRevLett.126.141302</u>. A. V. Dixit et al. (2021)

Itinerant photon detection

- Transmon coupled to a cavity far from the magnetic field in |+> state.
- The microwave photon produced in the magnetic field region travels towards the cavity.
- Photon-qubit interaction acquires a π phase shift.

J. C. Besse et al. (2018)

S. Kono et al. (2018)

Stonebraker

2000

excitations 1200 1200

1250

1000

MC simulation

Transmon as direct detection platforms

Collected events

 $\epsilon = 5 \times 10^{-13}$

 $m_x = 4.9 \text{ GHz}$

Dark-Photon signal

We can detect hidden AC field through the excitation of Transmons when on resonance with the Dark Photon's mass.

 $\vec{X} = X\vec{\eta}\cos(m_X t)$ Dark photon field: Total field on qubit: $\vec{E}_{eff} = \vec{E}_{EM} + \vec{E}_X = \vec{E}_{EM} - \epsilon \vec{X}$

DM exerts a slow Rabi oscillation on a qubit state:

Test chip design

Qiskit

R. Moretti et al. (2024)

\bigcirc	ub-IT
	N

QND – v0

- Design software: Qiskit Metal (IBM).
- Grounded (X-mon) qubits.

Cross-shaped shunt capacitance Ground plane Resonator coupling claw Dielectric gap Josephson junction or SQUID	1.0 0.8 0.6 0.4 0.4 0.2 0.0 1 [mm]	
		10.1109/TASC.2024.3350582

High dispersive shift χ needed.

• Already fabricated and tested.

٠

QND - v1

- Design software: KQCircuits (IQM).
- Floating (Double-pads) qubits.

- High dispersive shift for both qubits χ_1 , χ_2 , with $\chi_1 \simeq \chi_2$
- Further dark count suppression.
- Allows experiments on entangled-states.
- To be optimized.

Energy Participation Ratio

$\boldsymbol{\times}$	
$(\setminus$	ub-IT
\sim	\mathbf{n}

The EPR analysis computes the system eigenmodes $|\psi_m\rangle$ with $m \in \{\text{qubit, cavity}\}$ and computes the energy participation ratio:

$$p_{m} = \frac{Inductive \ energy \ in \ JJ}{Inductive \ energy \ stored \ in \ mode}$$
$$= \frac{\langle \psi_{m} \left| \frac{1}{2} E_{J} \widehat{\varphi}_{J} \right| \psi_{m} \rangle}{\langle \psi_{m} \left| \frac{1}{2} \widehat{H}_{lin} \right| \psi_{m} \rangle}$$

Where $\hat{\mathcal{H}}_{lin} = \hbar \omega_c \hat{a}_c^{\dagger} \hat{a}_c + \hbar \omega_q \hat{a}_q^{\dagger} \hat{a}_q$

EPR and Lumped Oscillator Model

$\boldsymbol{\lambda}$	
$\langle \rangle$	ub-IT
\sim	$\mathbf{\mathbf{N}}$

- EPR: Energy Participation Ratio.
- LOM: Lumped Oscillator Model (analytical extraction).

	Target	LOM	EPR
JJ inductance L_J [nH]	10	10	10
Transmon regime E_J/E_c	>50	78.61	79.96
Anharmonicity $lpha/2\pi$ [MHz]	202	230.62	216.44
Dispersive shift $\chi/2\pi$ [MHz]	0.30	0.31	0.35
Qubit frequency $\omega_q/2\pi$ [MHz]	5000	4995.79	4893.84
Cavity frequency $\omega_c/2\pi$	7400	7481.04	7435.44
Qubit-cavity coupling C_g [fF]	4	3.93	-

 $T_{1 Purcell} \simeq 51 \mu s$ for $Q_c \simeq 4 \times 10^3$

First chip fabrication

\bigcirc	ub-IT
\bigtriangledown	

Agreement with simulations

\bigcirc	ub-IT
\searrow	

Standard characterization carried out at NIST. Good agreement between experiments and simulations.

Fixed qubit	Measured	LOM
$\omega_{0 ightarrow 1}/2\pi$ [GHz]	5.689	5.682
$rac{1}{2}\omega_{0 ightarrow 2}/2\pi$ [GHz]	5.589	5.579
$\omega_{1 ightarrow 2}/2\pi$ [GHz]	5.485	5.476
$lpha/2\pi$ [MHz]	204	206
<i>L_J</i> [nH]	7.641	7.2

 $2g \simeq 200 \text{ MHz}$

-1

0

Bias [V]

1e9

7.55

7.50

7.45

Lequency [Hz]

7.35 -

7.30 -

-3

-2

Tunable qubit	Measured	LOM
$\omega_{0 ightarrow 1}/2\pi$ [GHz]	5.649	5.649
<i>L_J</i> [nH]	8.364	7.9
<i>g</i> [MHz]	98	100

1

2

3

Chip characterization

\sim	`	
\wedge		
$(\)$)	_
	Vub-I	L
	~ \	

 T_1 and T_2 are **lower than expected** for both qubits. This can be due to:

- Possible fabrication issues.
- Qubit frequencies higher than expected.
- No ground between qubit and coupler.
- Insufficient modeling of **Two-Level System** (TLS) losses.

Roberto Moretti - University of Milan Bicocca – INFN Milan Bicocca

Hybrid interface modeling

\sum	
∇	′ub-IT ∖

Leverage cross-section (2D) simulations on metal-edge regions (MER) to model surface losses.

- Achieve high-density meshing between interfaces, where the electric field is more intense.
- Computing EPRs on all surfaces, vacuum and substrate.
- Using 2D results to correct for Ansys Eigenmode EPR on customized-regions.
- Engineering shapes to reduce **surface** EPR.

1.0

250 µm

Improving dielectric loss estimation

MA

SA

MS

Surface EPR

\sim	
$(\setminus$	ub-IT
\sim	\mathbf{N}

- The 3D-only simulation does not capture surface ٠ EPR well enough.
- 44% decrease in $T_{1 TLS}$ according to hybrid method.

0.00030

0.00025

Substrate - Air EPR

Double-pad transmon surface loss

\bigcirc) _{ub-IT}
\searrow	

- Similar strategy has been carried out for doublepad.
- Bigger area and larger gaps lead to higher coherence time.
- Surface loss decreases by a factor of 3.5.

$f_{01} = 5.7 \text{GHz}$	Hybrid (MER)	
$T_{1TLS}(\mu s)$	31.1	
$\delta_{MA} = \delta_{SA} = \delta_{MS} = 5 \times 10^{-3}$ $\delta_{substrate} = 5 \times 10^{-7}$		
$T_{1TLS}^{substrate} = 61\mu s$		

Future developments

$\boldsymbol{\times}$	
(\setminus)	ub-IT
\smile	

- Modeling and simulation of single-qubit chip has been succesfully demonstrated.
- Fabrication and full characterization is being replicated within Qub-IT.
- Other multi-qubit detection schemes are being investigated for QND.
- Further refine the Direct Detection scheme modeling.
- Engineering detection setups.

Bicocca CryoLab refrigerator