

Quantum Engineering of Superconducting Qubits and Quantum Computers

William D. Oliver

Department of Electrical Engineering and Computer Science, MIT Research Laboratory of Electronics, and MIT Lincoln Laboratory

ASC 2020

4 November 2020

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Quantum Information Science and Technology

Quantum Sensing Quantum Networks Quantum Computing IBM Quantum Experience **Chinese Quantum** Satellite "Micius" Improves sensitivity, drift, & spatial Solves select problems that are **Enables distributed quantum states** intractable with classical computing resolution

Quantum Information Science utilizes a quantum mechanical description of nature to sense, communicate, and process/compute information in ways unobtainable by means based on a classical description of nature

Computing Development Timeline

Quantum computing is transitioning from scientific curiosity to technical reality.

Advancing from discovery to useful machines takes time & engineering

You must be in the game to play

 \bigotimes

32-pin Package 5x5 mm² silicon qubit chip

Y. Sung, ..., WDO, Nature Communications (2019)

- Superconducting qubits
- Engineering quantum systems
- Algorithms and 3D integration

How is a Quantum Computer Different?

	Classical Computer	Quantum Computer		
Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory,)	"Qubit" : quantum bit (any coherent two-level system)		
State	0 "Or" 1	$ 0\rangle \qquad Superposition: \\ \alpha 0\rangle + \beta 1\rangle \\ 0\rangle \qquad (And) \\ 1\rangle \\ \psi\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$		
Measurement	 <i>Discrete</i> states Deterministic measurement: Ex: Set as 1, measure as 1 	 Superposition states Probabilistic measurement: Ex: If α = β , 50% 0>, 50% 1> 		

Quantum computers rely on encoding information in a fundamentally different way than classical computers

How is a Quantum Computer Different?

	Classical Computer	Quantum Computer		
Fundamental logic element	"Bit" : classical bit (transistor, spin in magnetic memory, …)	"Qubit" : quantum bit (any coherent two-level system)		
Computing	 N bits: One N-bit state 000, 001,, 111 (N = 3) Change a bit: new calculation (classical parallelism) 	 N qubits: 2^N components to one state α 000⟩ + β 001⟩ + ··· + γ 111⟩ (N = 3) Quantum parallelism & interference 		
	$000 \longrightarrow \boxed{f(000)}$ $001 \longrightarrow \boxed{f(001)}$	$ \begin{array}{c c} \alpha & 0 & 0 \\ \hline \end{array} \\ \beta & 0 & 0 \\ \hline \end{array} \\ + \cdots \end{array} \rightarrow \begin{array}{c c} \alpha' & f(0 & 0 & 0 \\ \hline \end{array} \\ \beta' & f(0 & 0 & 1 \\ \hline \end{array} \\ + \cdots \end{array} $		

Quantum computers rely on encoding information in a fundamentally different way than classical computers

Classical and Quantum Gates

TRUTH TABLE

Output

00>

 $|01\rangle$

 $|11\rangle$

 $|10\rangle$

Output

 $|00\rangle$

101

110>

 $-|11\rangle$

GATE	CIRCUIT REPRESENTATION	TRUTH TABLE	GATE	CIRCUIT REPRESENTATION	MATRIX REPRESENTATION	TRUTH TABLE	BLOCH SPHERE	GATE	CIRCUIT REPRESENTATION	MATRIX REPRESENTATION	
NOT The output is 1 when the input is 0 and 0 when the input is 1.	->>-	Input Output 0 1 1 0	I Identity-gate: no rotation is performed.	— <u>I</u> —	$I = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$	$\begin{array}{c c} \hline \text{Input} & Output \\ \hline 0\rangle & 0\rangle \\ 1\rangle & 1\rangle \end{array}$	y y	Controlled-NOT gate: apply an X-gate to the target qubit if the control qubit is in state 1)		$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	Input 00⟩ 01⟩ 11⟩ 11⟩
ND The output is 1 only when both inputs are 1, otherwise the output is 0.	=D-	Input Output 0 0 0 1 1 0 1 1	X gate: rotates the qubit state by π radians (180°) about the x-axis.	— <u>X</u> —	$X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\begin{array}{c c} \hline lnput \\ \hline 0\rangle & \hline 1\rangle \\ \hline 1\rangle & 0\rangle \end{array}$	z v	Controlled-phase gate: apply a Z-gate to the target qubit if the control qubit is in state II)		$cZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$	Input 00⟩ 01⟩ 10⟩
The output is 0 only when both inputs are 0, otherwise the output is 1.	=D-	Input Output 0 0 0 1 1 0 1 1	Y gate: rotates the qubit state by π radians (180°) about the y-axis.	— <u>Y</u> —	$Y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$	$ \begin{array}{c c} \displaystyle \frac{ nput}{ 0\rangle} & \displaystyle \frac{Output}{i 1\rangle} \\ \displaystyle 1\rangle & \displaystyle -i 0\rangle \end{array} $	z x y				111)
ND The output is 0 only when both inputs are 1, otherwise the output is 0.	⊐D⊷	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Z gate: rotates the qubit state by π radians (1809) about the z-axis.	— <u>Z</u> —	$Z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{array}{c c} \hline Input \\ \hline I0\rangle & \hline I0\rangle \\ \hline I1\rangle & -I1\rangle \end{array}$		• Cla – ۱	SSICAL UI NOT, AND	niversal set	t
The output is 1 only when both inputs are 0, otherwise the output is 0.	⊐⊅∽	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S gate: rotates the qubit state by $\frac{\pi}{2}$ radians (00°) about the z-axis.	_ <u>_</u>	$S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2}} \end{pmatrix}$	$\begin{array}{c c} \displaystyle \frac{ nput}{ 0\rangle} & \displaystyle \frac{Output}{ 0\rangle} \\ \displaystyle 1\rangle & e^{i\frac{\pi}{2}} 1\rangle \end{array}$	90° Ž x	1 – – .	NAND 		
The output is 1 only when the two inputs have different value, otherwise the output is 0.		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T gate: rotates the qubit state by $\frac{\pi}{4}$ radians (45°) about the z-axis.		$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$	$\begin{array}{c c} \displaystyle \frac{ nput}{ 0\rangle} & \displaystyle \frac{Output}{ 0\rangle} \\ \displaystyle 1\rangle & e^{i\frac{\pi}{4}} 1\rangle \end{array}$	450 Z x	• Qu	antum u H, S, T, C	niversal set NOT	t
(NOR The output is 1 only when the two inputs have the same value, otherwise the output is 0.		Input Output 0 0 1 0 1 0 1 0 0 1 1 1	H gate: rotates the qubit state by π radians (180°) about an axis diagonal in the x-z plane. This is	— <u>H</u> —	$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$	$\begin{array}{c c} \hline lnput \\ 0\rangle & \hline \\ \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \\ 1\rangle & \hline \\ \frac{ 0\rangle - 1\rangle}{\sqrt{2}} \end{array}$	z y		••		

X-gate followed by a $\frac{\pi}{2}$ rotation

about the y-axis.

Oliver - 7 MIT EQuS – © 2019

Quantum Algorithm (Universal)

Quantum Algorithms and Speed-Up

Algorithm	Classical Time	Quantum Time	Speedup	Limitation
Simulation ¹ (quantum chemistry)	2 ^N (for N atoms)	Nc	Exp. in space, polynomial in time	Mapping problem to qubits
Factoring ² (+ related number theoretic)	2 ^N (for N digits)	N ³	Exponential	Classical runtime limit unproven
Linear systems ³ (Ax=b)	2 ^N (for N digits)	~N	Exponential	Strict conditions, e.g. sparse matrix
Optimization ⁴	2 ^N	?	?	Empirical
Search ⁵ (unsorted / unstructured data)	Ν	\sqrt{N}	Polynomial (\sqrt{N})	Data loading

Seth Lloyd^{1,3} MIT Mech. Eng. & Physics

Peter Shor² MIT Math

Aram Harrow³ MIT Physics

MIT Physics, Google

Michael Sipser⁴ MIT Math

Decoherence & Gate Time

Gate time t_{gate}: Time required for a single gate operation

Figure of Merit * : # of gates per coherence time = t_{coh}/t_{gate}

(* Rigorous metric: gate & readout fidelity)

Long coherence times are not sufficient, it's the number of gates before an error

Qubit Modalities

MIT Campus

MIT Lincoln Lab

Ike Chuang Physics, EECS

Rajeev Ram John Chiaverini EECS LL, RLE

Jeremy Sage LL, RLE

EECS

Terry Orlando Jamie Kerman EECS LL

and large teams at MIT & LL

Thanks to: P. Cappellaro, J. Chiaverini, D. Englund, T. Ladd, A. Morello, J. Petta, M. Saffman, J. Sage

Qubit Modalities

32-pin Package 5x5 mm² silicon qubit chip

Y. Sung, ..., WDO, Nature Communications (2019)

- Introduction to quantum computing
- Superconducting qubits
 - Engineering quantum systems
 - Algorithms and 3D integration

How to Build a Superconducting Qubit

 $L_{\rm J}$

Oliver - 14 MIT EQuS – © 2019

How to Build a Superconducting Qubit

P. Krantz, WDO, et al., Appl. Phys. Rev. 6, 021318 (2019); arXiv:1905.13641

Design Space for Superconducting Qubits

Design Parameters:				
<i>I</i> _C : critical current of small junction				
C _J : junction self-capacitance				
C _{sh} : shunt capacitance				
<i>N</i> : # of array junctions / shunt inductance				
γ: big/small JJ size ratio				
Qubit Properties:				
<i>E</i> ₀₁ : Qubit frequency (3-6 GHz)				
A: Anharmonicity				
\mathcal{T}^{Φ} : Sensitivity to flux-noise				
<i>T</i> ^Q : Sensitivity to charge-noise				
T^{κ} : Sensitivity to cavity-loss				
$ extsf{T}^{\delta}$: Sensitivity to quasiparticles				

Oliver - 16 MIT EQuS – © 2019 Koch et al., *PRA* (2007) Yan,...,WDO, *Nature Comm.* (2016) Orlando et al., *PRB* (1999) Manucharyan et al., *Science* (2009)

Cryogenic Engineering

5 GHz has a thermal energy of 250 mK \rightarrow operate at 20 mK. Commercially available, turn-key dilution refrigerators

Oliver - 17 MIT EQuS – © 2019

Fabrication Engineering

- Manufactured/designed qubits
- Lithographic scalability (silicon)

High-coherence air-gap cross-overs (optical microscope and confocal images)

Materials and Fabrication Engineering

MIT.nano Laboratory >2x larger than other US academic facilities

Novel, rapid-development processes: → exploratory research & prototypes (50 mm, 200 mm wafers) LL Microelectronics Laboratory (ML) ISO-9001 Certified, DoD Trusted Foundry

High-yield, reproducible processes: → larger-scale development & testbeds (200 mm wafers)

Microwave Engineering and Control

- Manufactured/designed qubits
- Lithographic scalability (silicon)
- RF and microwave control
- 100 MHz gate operations

0.2

Time [us]

0.3

0.4

0.5

Dual-Channel, 2GS/s, 14-bit AWG

Qubit Control via Microwave Pulses

0.5

Amplitude

Engineering Improved Coherence

- Remarkable improvement in T_{1.2}
 - Materials
 - Fabrication
 - Design
- Major qubit types at MIT & LL
 - Flux qubit: $T_2 = 23$ us
 - 2D transmon: $T_2 = 100$ us
 - 3D transmon: $T_2 = 150$ us
 - C-shunt flux qubit: $T_2 = 100$ us
 - Gatemon (C): $T_2 = 50 \text{ ns}$

Remarkable improvement in coherence from improvements to materials, fabrication, and design

"Moore's Law" for T₂

Nascent Commercial Quantum Processors

32-pin Package 5x5 mm² silicon qubit chip

Y. Sung, ..., WDO, Nature Communications (2019)

- Introduction to quantum computing
- Superconducting qubits
- Engineering quantum systems
 - Algorithms and 3D integration

Architectural Layers of a QIP

Layered Architecture

Architectural Layers of a QIP

Engineered Error Mitigation: Dynamical Decoupling

Eg. Lacrosse Cradling

Layered Architecture

N.C. Jones PRX 2, 031007 (2012)

 \bigotimes

$\overline{\bigotimes}$

Lacrosse in the Presence of Noise

Layered Architecture

Dynamical Decoupling from Running "Noise"

Layered Architecture

"Active Error Correction" in Lacrosse

Layered Architecture

J. Bylander, ..., WDO, Nature Physics 7, 565 (2011)

 \bigotimes

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Plenary presentation Wk2P4 given at the virtual ASC 2020, November 4, 2020.

Dynamical Decoupling: Noise Shaping Filters

 \bigotimes

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Plenary presentation Wk2P4 given at the virtual ASC 2020, November 4, 2020.

Dynamical Decoupling: Noise Shaping Filters with 1 π -pulse

J. Bylander, ..., WDO, Nature Physics 7, 565 (2011)

 \bigotimes

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Plenary presentation Wk2P4 given at the virtual ASC 2020, November 4, 2020.

Dynamical Decoupling: Noise Shaping Filters with 2 π -pulses

Dynamical Decoupling: Noise Shaping Filters with $N\pi$ -pulses

Engineered Error Mitigation: Dynamical Decoupling CP / CPMG (improves the physical qubit error rate) $\frac{\pi}{2}$ π π τ $\frac{\tau}{N}$ $\frac{\tau}{N}$ $\frac{\tau}{N}$ $\frac{\tau}{N}$ 2N $N\pi$ -pulses ($N \ge 1$) (รา¹) CPMG simulation Te **Noise-Shaping Filter Functions** 1/e decay time, CPMG • CP N = 0UDD $g_N^{(\omega,\tau)}$ Ramsey (N=0) 10 6 Φ_{b} = -0.4 m Φ 0.1 10 100 1000 Number of π pulses, N 0 0 2 4 Frequency, f (MHz)

Carr – Purcell (– Meiboom – Gill) Sequence

π 2

2N

 $\tau = 1 \,\mu s$

S ~ 1/f

6

CP(MG) UDD

8

 $\frac{\tau}{N}$

Noise Spectroscopy

Qubit Noise Spectroscopy Filter Engineering & Optimal Control

Carr – Purcell (– Meiboom – Gill) Sequence

J. Bylander, ..., WDO, Nature Physics 7, 565 (2011)

Y. Sung, ..., WDO, Nature Communications 10, 3715 (2019) F. Yan, ..., WDO, Nature Communications 7, 12964 (2016) F. Yan , ..., WDO, Nature Communications 4, 2337 (2013)

32-pin Package 5x5 mm² silicon qubit chip

Y. Sung, ..., WDO, Nature Communications (2019)

- Introduction to quantum computing
- Superconducting qubits
- Engineering quantum systems
- Algorithms and 3D integration

Gate Model Superconducting Qubits

Superconducting Coherence **Qubits** & Gate Fidelity Ramsey data Readout 0 40 60 pulse delay (µs) 20 80 100 - F_{1QB} =0.9994 1.0 0.9 **F**_{1QB} = 99.94% Readout 0.8 F_{2QB} = 99.7% 0.7 0.6 0.5 250 500 750 1000 1250 1500 0 Number of Clifford Gates

M. Kjaergaard, M. Schwartz, ..., WDO, arXiv:2001.08838

2D Arrays of Qubits Lattices, Error Propagation, Coherent Errors, ...

Y. Yanay, ..., WDO, C. Tahan, arXiv:1910.00933 Accepted to npj Quantum Information (2020)

 \bigotimes

3D Integrated Superconducting Qubit Platform

64-Qubit Quantum Testbed Building in 2020

2D Arrays of Qubits

Lattices, Error Propagation, Coherent Errors, ...

Y. Yanay, ..., WDO, C. Tahan, arXiv:1910.00933 Accepted to npj Quantum Information (2020)

3D Integration for Quantum Processors

IARPA Quantum Enhanced Optimization

Illii

3D Integration for Quantum Processors

Maintaining process independence for each wafer / layer enables separate optimization and retains focus on high-coherence qubits

3D Integration for Quantum Processors

IARPA Quantum Enhanced Optimization

D. Rosenberg, et al., npj Quantum Information 3, 42 (2017)

l'liiT

3D Integration for Quantum Processors

IARPA Quantum Enhanced Optimization

Interposer isolates qubit from readout/interconnect layer. Superconducting through-silicon vias provide connectivity.

 \bigotimes

Illii

3D Integration for Quantum Processors

IARPA Quantum Enhanced Optimization

Readout/interconnect layer routes wires and amplifies signals 8-layer planar Niobium process for efficient wire routing

Traveling Wave Parametric Amplifier

Tolpygo, ..., WDO, IEEE Trans. (2015)

 \bigotimes

3D Integration for Quantum Processors

IARPA Quantum Enhanced Optimization

Indium bumps provide electromechanical joining without impacting coherence times **Cross-section of Fabricated In bumps bump-bonded chips** So - da Chip MCM 3D image of bump-IR image of bumpbonded chips bonded chips Departm Cherror 8.500 pr Tilt < 0.25 mrad Alignment ~1 µm Danna Rosenberg, ..., WDO, npj Quantum Information (2017)

 \bigotimes

Quantum Worldwide

(not an exhaustive list)

* European Commission

Quantum Worldwide

(not an exhaustive list)

* European Commission

MIT Center for Quantum Engineering

<u>Mission Statement:</u>

 We establish an initiative dedicated to the academic pursuit and practice of quantum engineering to accelerate the practical application of quantum technologies

Objectives:

- Define quantum engineering
- Educate tomorrow's quantum engineers
- Partner with industry via consortium model
- Advance quantum science and engineering

MIT Center for Quantum Engineering (MIT-CQE)

The MIT-CQE is a platform for research, education, and engagement in support of *quantum engineering* – a new discipline bridging quantum science and engineering to accelerate the development of quantum technologies.

www.rle.mit.edu/cqe

Quantum Engineering

Quantum Engineering is the bridge connecting science, mathematics, and classical engineering

Acknowledgements

MIT Lincoln Laboratory

Eric Dauler, William D. Oliver, Andrew J. Kerman, Danna Rosenberg, Jonilyn Yoder, John Rokosz, Michelle Sibiga, Barbara Santorella, Erin Jones-Ravgiala, Lynn Clifford

Measurement and packaging: Jeff Birenbaum, Greg Calusine, David Conway, John Cummings, Rich D'Onofrio, Evan Golden, Tom Hazard, Cyrus Hirjibehedin, David Holtman, Gerry Holland, Lee Mailhiot, Jovi Miloshi, Danna Rosenberg, Gabriel Samach, Mollie Schwartz, Kyle Serniak, Arjan Sevi, Shireen Warnock, Steve Weber, Terry Weir

Fabrication & 3D integration: Mike Augeri, Peter Baldo, Vlad Bolkhovsky, Rabindra Das, Alexandra Day, Mike Hellstrom, Bethany Niedzielski Huffman, Lenny Johnson, David Kim, Jeff Knecht, John Liddell, Karen Magoon, Justin Mallek, Alex Melville, Peter Murphy, Brenda Osadchy, Meghan Purcell-Schuldt, Ravi Rastogi, Chad Stark, Marcus Sherwin, Corey Stull, Chris Thoummaraj, David Volfson, Jonilyn Yoder, Donna-Ruth Yost, Scott Zarr

Simulation: Sam Alterman, Andrew J. Kerman, Kevin Obenland, Mike O'Keeffe, Wayne Woods

MIT Engineering Quantum Systems (EQuS)

William D. Oliver, Simon Gustavsson, Terry Orlando, Mirabella Pulido

Postdocs: Jochen Braumüller, Agustin Di Paolo, Morten Kjaergaard, Antti Vepsäläinen, Joel Wang, Roni Winik

PhD students: Aziza Almanakly, Junyoung An, Charlotte Bøttcher, Leon Ding, Ami Greene, Bharath Kannan, Amir Karamlou, Rebecca Li, Benjamin Lienhard, Chris McNally, Tim Menke, Sarah Muschinske, Jack Qiu, David Rower, Gabriel Samach, Youngkyu Sung

Master's Student: Cole Hoffer

Undergraduates: Matthew Baldwin, Thomas Bergamaschi, Grecia Castelazo, Thao Dinh, Elaine Pham, Megan Yamoah

