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CERN In brief
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CERN In brief

The CERN accelerator complex
Complexe des accélérateurs du CERN

CMS
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A very large technical site with a unique series of accelerators, detectors and
computing serving particle physics towards high energies and diversity
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Cryogenics at CERN

Cryogenics is a key enabling technology for CERN mission
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LHC
o 8 cryoplants including 8 cold
compression systems
o 8 Cryogenic sectors
o 56 DFBs, 5 SC links

LHC detectors
o ATLAS SR + MR, PCS, ANRS,
cryogenic circulators

o CMS
SM18
o 2refrigerators/liquefiers
o 2 cooldown-warmup units
o Magnet test benches
o RFtest benches
o HL-LHC IT String
Meyrin
o  Central liquefier B165, Cryolab
o  Central purifier B253
o B163
o HIEISOLDE
o WAT/B180 (FAIR S-FRS tests)
North Area
o Vertex NA61.1, NA61.2
o NA62
o COMPASS/AMBER
o ATLASH8
o CMSRD5
SPS

o BA6 (CC), BA4 (Coldex)
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Cryogenic fluids (helium, nitrogen, argon, krypton)

Helium inventory at CERN: 170 t (today) : needs to be managed !
 LHC (accelerator & detectors) helium full inventory: 136 t
«  Strategic permanent storage : 20 t

Nitrogen liquid for LHC (accelerator & detectors) full cool down: 11°500 t

(equivalent to 500 ISO-transportable containers delivered), normal consumption CERN wide about 6’000 t/year.

Argon liquid for Neutrino platform and ATLAS calorimeter: up to 1'800 t

Krypton liquid for NA62 calorimeter: 24 t (detector cryostat 30 years in continuou
operation)

Hydrogen small amount in targets

Characteristic temperatures of cryogenic fluids [K]

Fluid Triple point Normal boiling point Critical point

Methane 90.7 111.6 190.5

Oxygen 54.4 90.2 154.6

Argon 83.8 87.3 150.9

Nitrogen 63.1 77.3 126.2

Neon 24.6 27.1 44.4 NPO4-CAM=410
Hydrogen 13.8 20.4 33.2

Helium 2.2 (A point) 4.2 5.2
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Cryogenic temperature levels and cooling power

Helium refrigeration capacity at CERN (kW@4.5 K)
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Helium Cryogenics at CERN (1/2) the LHC and its experiments

e LHC e
o 8cryoplants Fis / 2 = SV 1R ;
o 8 Cryogenic sectors
o 56 DFBs, 1200 CLs
(with HTS), 5 SC links

e LHC detectors
o ATLAS SR + MR, PCS,
ANRS
o CMS
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CERN wide helium cryogenic systems for:

» Test benches for accelerator magnets, cables and wires,
RF cavities

« Detectors’ components tests (magnets and sub-detectors)

« Large magnetic spectrometers for fixed target physics
experiments

« Cryogenic laboratory test bench facilities

* In situ helium liquefaction for users without dedicated
cryogenic plant

« Wide temperature range and powers

& s /4 o oi [ \GHE
HL-LHC String: SC link and cryogenic

Vertical magnet tests in - Horizontal magnet tests in Cryogenic infrastructure in B180 HL-LHC SC link tests in 2024 (courtesy A
' distribution line

SM18 SM18 .
Ballarino)
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Helium cryogenics and superconductors

= LT superconductors cooling at 1.9 K (Hell) / 4.5 K (LHe) / 4.5 —
5.5 K (supercritical, LHC SC links)

= LHC HTS current leads in the range 4.5 K—-50 K

= Superconducting links for HL-LHC: MgB, 4.5 — 20 K and

REBCO 20 K-60 K LHC dipole LHC magnet interconnection NbTi cable of LHC SC link

= MgB, superferric magnet operating at 20 K

10q [T 11T 17T 17 ™17 ™ T ™ 17T ™ 17T 7™ T 7T
REBCO SuperOx
40 jirn Hastelloy, 2x 10 jim Cu
B 1 tape surface
Bi2212 B-OST
t-;—- 50 bar OP, nGimat powders
E 10°}
£ 107 EBCO @ 20K =
2- Bi2223 Sumitomo A MgB, Superferric magnets operating at 20 K,
- v S Eilipa surface | R courtesy A. Ballarino
W : . B 1 tape surface _
—_ MgB, ASG ] Nb3Sn magnet for HL-LHC (1.9 K)
HL-LHC Link
Nb-Ti Nb_Sn B-OST
optimized for low fields LHC dipole “;mﬂu? 120 ‘ KA @ 25 K, ®~90 mm
and High Field MRI HL-LHC - 11 T dipole 18kA @ 25K 7kA @ 25K HURA , i i bk v
10° b . ®~24 mm ®~10.5 mm 0,
- @4.2K A ez
| I I | L 1 P T TR T T T ST S TR
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B (T) Courtesy A. Ballarino

Instrumentation wires.

MgB2 cables for HL-LHC SC links, courtesy A. Ballarino - REBCO cable 2kA @ 77 K
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Systems of a cryogenic facility (WAT facility at CERN)

A cryogenic facility is made of many
systems.

They must all operate together !

version 4.1
15-11-2017

\ compressor

cold box -
(150 gfs; 18 bar)

4 x 80 m'
GHe buffer

compressor
Cwu 2

(50 g/s; 15 bar)

[ Tendering
- Ordered / under production
I:l Refurbishing / maintenance

i
----- I-"‘: | §
LN, dewar 1
Y S S, [ In commissioning

B commissioned
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System design for cooling superconducting systems (1/2)

« Athorough integrated system analysis of the requirements and functionalities is mandatory.
Design the superconducting system together with cryogenics.

« Selection of operating temperature, shielding and cooling technology is essential.

« Keep design of specific systems in-house. Careful identification of critical components.
 Include margins. But not margins on margins: manage the margins.

« Essential to study and design for nominal case and non-nominal cases. What happens if ... ?

Energetic cost for heat loads and current leads

Temp. Equ. @4.5 Elec.power Description 5K Uns / ‘ : Mag?]:tsM(?\irr:;s)
* i :
Level [w] [w] (2400\II|V) 5 g 7 73 %
50-75K 0.058 17.4 Heating of GHe from 50 K to 75 K (screen cooling, 18.5 bar) ;
“ = 4.5-20K 0.48 144 Heating of supercritical helium (3 bar)
i
% < 20-25k 0.18 54 Typical MgB2 SC link
v 3
T e 45K 1 300 Isothermal heating (T= 4.5 K) of saturated LHe (boiling)
1.8K 2.51 753 Isothermal heating (T=4.5K) of saturated LHell
" . : crrace -
:%g g 4.5-290K 5.6 1680 Normal conducting current lead feeding in LHe (per kA) 30%of | 95% 72 %
§ ‘g 20-290K 2.3 690 Current lead with feed at 20 K(value per kA) Carnot | 68 %
S _o )
3° 50-290K 1.2 360 Current lead with feed at 50 K(value per kA) Exergy flow diagram for an LHC sector, courtesy S. Claudet, CERN

*assuming 250 W electric per wattisothermal @4.5K
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System design for cooling superconducting systems (2/2)

« Cryogenic and superconducting systems are complex and difficult to repair !

« Plan a robust design, capable to withstand any operational error or contamination (they do
happen !)

 ldentify critical components and where possible provide redundancy or replaceability
» Take into account cycling (thermal, electrical and mechanical)
* The energy needed to create a hole in cryostat is small (electrical arc).

« Maintainability / repairability shall be included as a core design requirement. Access to
critical systems (splices, etc.), sectorization, maintenance of cryoplants, etc.

e And more ...

o ) ) Repair of metallic compensator in the LHC cryogenic
Consolidation of LHC splices during LS1 distribution line during LS2 (2020)
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The availability challenge

» Complex Helium cryogenic facilities can operate with availability > 98% for a year !

» Cryogenic systems and machinery (cryoplants) need maintenance! Yearly technical
stops and long shutdown approx. every 40’000 hours. Typical 26’000 hrs (for LS2).

* Spare parts analysis, planning and monitoring are essential!

100%

98%

96%

94%

92%

90%

88%

86%

84%

82%

80%

LHC availability

)
\\
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LHC CRYO AVAILABILITY SUMMARY
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ECRYO PLC
CRYO SEU

= SUPPLY
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u USERS

= RUN TIME
CRYO AV

G

Maintenance of LHC compressors

Replacing a cold compressor impeller in LHC

July 2016 - June 2017

July 2017 - June 2018

July 2018 - June 2019

RUN

Availability RUN

Availability

|Availability

Mevri Central Liquefier 165| [He Liquefier 98.8%
L Cryolab 163 THe Liquefier 99.8%
SM18 Testing Facility LHe Liquefier 99.6%
NAG61.1 I He Refrigerator 91.9%
NA61.2 I He Refnigerator 96.4%
ATLAS H8 I He Refrigerator 93.8%
North Are.
° 4 COMPASS I He Refugerator 99.3%
CMS RDS I He Refrigerator
NA6G2 LEr Calonnmter
Isolde accelerator HIE-Isolde I He Refrigerator
BA4 Coldex I He Refnigerator
SPS lerato
ACCETOIAIOT "B A6 RF Cavity test | LHe Refrigerator
LHC Point 8 CAST I He Refrigerator
. NP04 LAr Calorimiter
Neutrino NP02 LAr Calorimiter
Total cumulated running hours 47,411 h 61,883 h 56,870 h

Non-LHC facilities availability
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Instrumentation and control

» The total system availability depends on the weakest and sometime simplest components (not
valid only for cryogenics!)

* Redundancy and replaceability for most critical components is highly desirable!
« Validation program necessary for non-replaceable (of very difficult to repair) sensors (e.f. Temp

sSensors)
» Itis possible to achieve >98 % availability with > 30’000 I/O, thousands of valves, >5000 control CER,\;developed mounting plate
Ioops, 100 PLCs, etc. for vacuum side T sensors

« For long operation (>10 years), aging and obsolescence need to be taken into account. For
example: control PLC “EoL” = 15/20y, electrical cabinet “EoL"= 25y

Number of instrum failures per machine Downtime per type

60
108:00:00

Period 2022-2024: 120 NC Period 2022-2024: 23 critical NC
0 96:00:00
84:00:00
40 72:00:00
60:00:00
30
48:00:00
20 36:00:00
24:00:00
10
I 12:00:00 l . l
, I - [ — l l . 0:00:00 - -
QSCA QSCB Qsce QURC  QURL2H QSKA  QSRA/QURA  QSRB Qui Tunnel PT m AMB cv elec VAC ST AC

Instrumentation failure per LHC system 2022-2024, courtesy B. Bradu, CERN Critical NC causing LHC machine downtime per type, courtesy B. Bradu, CERN
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Availability: the warm side

Don’t underestimate the impact of more «conventional»
components

38 Cryo plants: Capacity@4.5K from 100W to 18kW, Total
capacity: 171kW @4.5 K;

94 Helium Screw Compressors: from 110kW to 1876kW,
14 Helium Piston Compressors: from 14bar to 250bar;
107 Oil pumps in operation

133 Gas Helium Pressure Vessels: From 15 m3to 250 m3;
54 High Pressure Gas Cylinders: from 0.8 m3to 3 m3;

Acoustic emission requalification of pressure vessels Damaged ball bearing

P18 P8

= = = =

* Rotating room temperature machinery can be a —
significant cause of non-availability.

ATLAS CMs

HP

 lIdentify and take the necessary measures for “cold “ or
“hot” spares.

* Preventive maintenance and monitoring!

cP1
MP

Type of compessors for the LHC (each color is a different model)
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Managing helium

* Helium is non-renewable. Losses happen !

* Helium is mandatory for cryogenics below 20 K

» Annual production (2023) approx. 28’000 T but recent supply crisis with large price variation. Demand is expected to
increase.

« Save, plan, manage when needed

For LHC machine constant effort to reduce losses
showed significant results over the past 15 years

e Total e===Cumulated

45.0 450
oo a0 410 oo 371 oo
35.0 350
30.0 300 %
25.0 250
20.0 176 200
15.2
15.0 13.0 13.1 12.6 123 44, 140132 e 150
10.0 100
5.0 50 O GHe 250 m3 vessdis (malkeup)
-= GHe 75 m3 vessels (make-up)
GHe 250 m2 vessds (quench bufier)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 ’ ) Lie 1003 resseis Liquid helium storage 250m?
LHC
Filling RUN1 LS1 RUN2 RUN3 ,
- Gaseous storage 15’200 m3 = 44 tons
LHC Inventory 140 to 150 T - Liquid storage 720 m3 = 90 tons
<10% of losses for the LHC machine Courtesy F. Ferrand, CERN

EFATS 2024 Workshop, A. Perin, CERN, TE-CRG 17.10.2024 IEEE CSC, ESAS and CSS] SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 58, Feb. 2025.

Invited presentation was given at EFATS 2024, Oct. 17, 2024.



Helium: tentative forecast for the next century ?

Theoretical exercise with high level of uncertainty

Long term projections are risky, but some models
are published based on exponential decrease model:

B Forecast e e e « dQ (b pattern) applied for Q=8300 a=450,b=0.054 - Peak in 2064 e dQ (b pattern) applied for Q=6600 a=450,b=0.054 - Peak in 2064 = = =Demand 3% = = = Demand 6%
Q (t) _ Q max 120
—bt
1+ ae
... ..'
125 125 o* .,
L] L]
. .
. .

100 . .

100 100 . .
. .

75 75

50 50

80

Production (kT He}
Production (kT He)

25 25

1950 2000 2050 2100 2150 1950 2000 2050 2100 2150
Year Year 60
N USA Poland Russia N USA Poland Russia
BN Canada W Algeria EEE Australia BN Canada W Algeria WM Australia
Bl France I Qatar B China B France Hl Qatar I China
(W (b 40
Source Minerals 2014 by Steve Mohr and James Ward

based on WW estimated reserve of 8300 Kt

“The elephants” behind the figures:

To obtain helium as a by-product, LNG must be
extracted from the relevant sources. How does this
align with the current fossil fuel trajectory? 0 S o o e o @ o
Without a business model that justifies investment & & 5 & & T S P

in helium liquefaction at the source, there is a high _ _ _
. . Exponential decrease model (b) compared to production capacity forecast
risk of losing the molecules anyway. .
Slide Courtesy F. Ferrand, CERN

20
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Summary

« CERN has designed, installed and operates a large number of helium
cryogenic systems for superconducting devices

« Very diverse superconducting systems are operated at CERN In
temperatures ranging from 1.9 K to 50 K

* Very complex cryogenic superconducting systems can achieve availability
> 98 %

« High performance and availability requires considering all the aspects of a
system at design time and then very organized operation and
maintenance

« Performance and availability improvements are fed back the design of
new systems
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