IEEE

WOLTE

mec

Superconducting Array of Arrays for Acceleration of Transformers

Manu Perumkunnil, Kartik Lakshminarasimhan, Udara De Silva, Debjyoti Bhattacharjee, Trent
Josephson, Quentin Herr,Anna Herr

IEEE-CSC, ESAS and CSS] SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.



IEEE-CSC, ESAS and CSS] SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy. I EEE

OVERVIEW WOLTE

You can add a subtitle if you want.

" Introduction & Motivation

* Accelerating LLMs via Superconducting Digital Systems
= Scaling up

= Conclusions & Future

“mmec :



Introduction & Motivation



IEEE-CSC, ESAS and CSS] SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

Introduction & Motivation
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Introduction & Motivation
Cost of Al Training

Total compute used to train notable Al models, measured in total FLOP (floating-point operations) | Logarithmic
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Introduction & Motivation W I.TE

Cost of Al Training

= Soaring cost of Silicon (& design) as we hit process technology scaling limits
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projection

Dennard | Post Dennard

Transistor density
[#/mm?]

Litho density
(Contact Poly Pitch*Metal Pitch)

[10%mm?] optimization

oy
2
)
(%]
©)
O
>
()
o
©
+—
O
+—

asml-investor-day-202 | -technology-strategy---martin-van-den-brink.pdf

“mmec ‘


https://edge.sitecorecloud.io/asmlnetherlaaea-asmlcom-prd-5369/media/project/asmlcom/asmlcom/asml/files/investors/investor-days/2021/asml-investor-day-2021-technology-strategy---martin-van-den-brink.pdf

IEEE-CSC, ESAS and CSS] SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56, Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy. I EEE

Introduction & Motivation W I.TE

Cost of Al Training

Power distribution & thermal management cost (including Infra)
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Cost of Al Training

= Cost to overcome Memory & Interconnect (Infra and otherwise) bottlenecks that can severely
underutilize compute in scaling AI/HPC clusters
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Accelerating LLMs via Superconducting Digital Systems
Full stack solution

= Co-optimization across the stack is essential to
exploit novel technology solutions to the maximum
keeping in mind cost (including NRE, infra & cost of
adoption)

Software

Architecture

=  Superconducting technology offers = Chiraufic

= THz bandwidth interconnects

Packaging

= Quantum accurate digital bits

" Fast, low energy logic & memory Fabricati ol
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Superconducting technology High speed data link ,
between digital superconductor chips:
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AC ce I e rati n g L L M S Scaling NbTiN-based ac-powered Josephson digital to W LT E

400M devices/cm?; https://doi.org/10.48550/arXiv.2303.16792
Superconducting digital logic and memory

Gate Schematics for JJ based PCL JSRAM unit cell schematics & Layout

= Superconducting digital Pulse-Conserving BUF s

0.75 0.75 BW Ww WR’

Logic (PCL), Josephson SRAM (JSRAM) & A i<35 g i’SDBUF
AC power distribution via resonant
networks allow for classical digital systems
that are scalable

0A2 %D,

= Fabrication stack allows for digital logic e
with 16 layers, achieving up-to 400
MJJ/cm? device density. The stack allows OR3
scaling beyond 28 nm lithography & is
compatible with standard high- MAJ3
temperature CMOS processes.
AND3
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Attention Is All You Need: hteps://doi.org/10.48550/arxiv.1706.03762 | EEIE

AC ce I e rati ng L L M < Transformers from Scratch: https:/e2eml.school/transformers.html W LT E

Workload

Layer 1 Layer 2

all the masks (keys: KT)

Multi-Head Feed Multi-Head Feed
Attention Forward Attention Forward

+ +

one-hot feature vector (query: Q)

K
Attention (@, K, V') = softmax( ¢

MultiHead(Q, K, V) = Concat(heady, ..., heady, )W ©
where head; = Attention(QWS=, KW, viw))

FFN(JC) = maX(O, Wi + bl)WQ + bo

feature-specific mask

= LLM training (& inference) workloads are mainly composed of Matrix-Multiplication kernels
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https://cloud.google.com/blog/products/ai-machine-learning/cloud-tpu-v4-mlperf-2-0-results I EE 16" Workshop on
- . - Low Temperature Electronics

Accelerating LLMs W LTE'™

Architecture

@» NVIDIA A100 (Available on-prem)
@ Google TPU v4 (Available Cloud)

A o Google TPU v4 (Research)
=)
D
0 | 8
* Array architectures (like systolic p e )
. E 2048
arrays) are best suited to =
efficiently execute MMM kernels ' | 2
>>FLOPS/chip due to >>MACs =
( P A A
1.0

* They also have minimal control
overhead > reduces design
complexity, NRE & cost of 05
adoption for superconducting tech
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Accelerating LLMs

Architecture

= Control units to buffer dataflow from
DRAM to MAC units

DRAM
interface
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= However, simple systolic arrays incur pipeline
bubbles during “FILL” & “DRAIN”
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Accelerating LLMs W LTE'

Array Architecture

Regular Array Custom SCD Array

Systolic Array

o

* Proposed Custom Superconducting Array is a homogenous version of regular arrays with

superconducting wires.
*  While this comes at the cost of more wires, the minimal wiring overhead (Power & Performance)

incurred in superconducting digital technology makes this an ideal solution
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Scaling-Up W LTE

Array Architecture

= Scale-up (Single Large PE array consisting of ‘N * N’ MACs) vs Scale-out (X’ PE arrays consisting of
‘N/X XN/X ”MACs)
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Scaling-Up

Superconducting Processing Stack

= Superconducting processing stack: multifunctional
die stack 3D integrated via superconducting TSVs
(£30um pitch, | Oum diameter)

On-Chip
Memory Stack

—» Scaled out

Host + Switch
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custom SCD Array

IEEE

WOLTE

Stacked superconducting integrated circuits
with three dimensional resonant clock
networks: US20220208726A1

* Provisioning of JSRAM on-chip memory vs
Main Memory BW
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Scaling-Up W LTE

Superconducting Array of Arrays

= Shifting data to enable distributed matrix-multiply across the chip stack array is necessary: wrap
around @edges = 2D torus topology

= Superconducting bumps (<30um pitch, | Oum diameter) to facilitate inter-array communication
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Scaling-Up W LTE

High Level Metrics

@ 30Gbps per for superconducting wires, TSVs

& bumpse SCD Accelerat
* Intra-array & Inter-array bandwidth: Main Memory + Host Die
~0.5TBps/mm?

@ ) device dimension of 200nm, minimum
metal pitch of 90nm & JSRAM density of
~4MB/cm? >

= Al compute density: ~| 7TFlops/mm?

@ Cooling efficiency of 325 (4K regime), 290
attojoules per ) transition =

= Energy efficiency: >50TOPs/Watt,
(~100x vs conventional systems)

77K Interposer
+ Base Board
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Conclusions & Future Outlook

= Path for realizing highly efficient Superconducting Array of Arrays for acceleration of next
generation Al/ML algorithms like Transformers

= Sneak peek on scaling towards supercomputing/post-exascale clusters:“A Datacenter in a
shoebox, IEEE Spectrum, June 2024”

= Towards high fidelity, calibrated and accurate simulations based on experimental data

= Connectivity to Main Memory (77K-regime), and Room Temperature links need to be investigated
for a feasible appliance

= Utilizing open standards for ISA, and software stack to help in wider community adoption
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