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Aerospace Electrification Trends
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Challenge: 

• Orders of magnitude improvements required in distribution system & component performance

• 3X to 4X improvement in power density required over current State-of-the-Art.

• Superconducting (cryogenic)  propulsion system can provide such scale-up in power

Electrification of Propulsion: Cryogenic  system

“Anatomy of a 20 MW Electrified Aircraft: Metrics and Technology Drivers”, AIAA 
Propulsion, 2020; Kshirsagar et. al. 
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• 20 MW superconducting propulsion

system

• Distributed propulsion with a multi-MW

motor

• Turbine driving a generator to produce

electricity

• Cryogenic Fuel

• Fully super-conducting including

generator, motors, cables (cryostats), fault

current limiters, circuit breakers

• Superconducting coils: MgB2, ReBCO

Electric Propulsion Architecture
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• Motor, Generator

• Rotor: rotor case/outer wrap: centrifugal forces and

thermal stresses

• Stator: magnetic forces, eddy currents

• Torque tube/drive shaft: torsional forces and thermal

stresses due to gradient

• Cable cryostat:  internal pressure from cryogen

• Superconducting motor:  25% to 40% is structural (e.g. driveshaft,

casing, end covers, housing, rotor, stator)

• Cryogen storage tanks: internal pressure and thermal stresses,

low/no permeability

• Thermal components

• Cable cryostat, Cryotank: thermal insulation (need low

conductivity ‘K’)

• Heat exchanger: permit heat flow (high ‘K’ needed)

Critical Structural Components and their design requirements:

Ground-based power cable 
(Cryogenic) from Nexans

https://www.compositestoda

y.com/2013/07/nasa-reach-
composite-cryogenic-fuel-

tank-milestone/

Conceptual diagram of a 
2.5 MW cryo-cooled 

superconducting motor
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Material MPa MPa MPa kg/m^3

Steel 200,000 579 1448 7800 25.6 18.6

Aluminum (2024) 85,000 551 758 2700 31.5 28.1

 Titanium (Ti-5AL-2.5 Sn)* 115,000 760 790 4200 27.4 18.8

T800-epoxy- UD tape- Cryo 158,000   N/A 2310 1660 95.2 139.2

Quasi-Isotropic-Cryo (IM7-8551) 64,000   N/A 694 1660 38.6 41.8

CFRP-Unidirectional-RT (IM7-8552) 144,000   N/A 2400 1660 86.7 144.6

CFRP-Quasi-Iso-RT (IM7-8552) 57,230   N/A 717 1660 34.5 43.2

Materials: Fiber reinforced polymer composites, Aluminum and Titanium

Structural Light-weighting/improving power density

• (PMC) Composites have high strength-weight ratios, provide directional reinforcement

• Advantageous where loads are directional (e.g. hoop loads in rotor, pressure tanks)

Approximate values for modulus, strength

Cryogenic performances of T700 and T800 carbon 
fibre- epoxy laminates, Wei, 2015
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• FRP Composites are mature:

– Since 4 decades, pace increased significantly in the

90’s.

– Composites form 50% by weight of a Boeing 787

– Electric aviation will need composites, and other

forms of light-weighting, to achieve 3X improvements

in power density

• Challenge for cryogenics community:

– To adapt them to aviation cryogenics

– Changes in material response, thermal stresses from

cool-down, thermal gradient, permeability

• Current cryogenic applications

– G10:  glass fiber with epoxy (low strength)

– Cryostats

– LH2 tanks produced by NASA/Boeing

– Zylon-fiber composite, pulsed magnet at NHMFL

– 6

Fiber-reinforced polymer Composites in Commercial Aviation:

Aluminum

Composites

Zhu et. al.  Propulsion Power and Research, 2017

6

5.5m dia.
NASA LH2 tank
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Fiber reinforced Composites- Thermo-structural assessment needed at 
3  length scales

– Micro-scale (fiber, matrix of resin): ~ 5-

9 microns.

– Meso-scale: ply (inter-ply) level; 0.5mm

– Macro-scale (structural component e.g.

rotor, tank):  centimeters to meters

– Challenges:

• Different coefficient of thermal

expansion between polymer and fiber

• Polymer property changes during

cooldown

UD 
tape

Fabric Braid

(Triaixial )

Meso-scale

Lamina/Ply

0.250-0.500 mm

Fiber

Matrix 
(polymer)

Micro-scale

Single fiber

5 to 9 microns

Macro-scale

Component

0.1 to 10+meters
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Composite properties at cryogenic temperatures:

• Polymers become stiffer, and less compliant (~ 1.5X modulus,

2X strength)- plots below for effect of low temperature

• Similar response in composites. Data for T700/epoxy  UD

tape in 0 and 90 degrees (right) show stiffness, strength

improve in composite

Yang et. al., Prediction on Residual Stresses of Carbon/Epoxy

Composite at Cryogenic Temperature; Poly. Comp, 2019  

Ply- 0 degree
(along fiber)

Ply- 90-degrees
(matrix dominated)

RT

93 K

Brem et. al.,  Elasticity, plasticity and fracture toughness at ambient , 
Cryogenics, 2021

RT
93 K

LN2 temperature Room  temperature
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Fracture toughness of composites cryogenic temperatures:

• Fracture toughness (FT): resistance of material to crack growth

• Depends on polymer, and the ply definition

• Ply angles at interface of crack- can allow crack to jump

across plies rather than propagate between plies

• Ply architecture: plain weave fabric showed higher

toughness than UD tape. Undulating tow architecture may

help.  Braids have similar undulations.

• PW glass-epoxy fracture tests showed an increase and

then decrease of GIc. Lower temperatures involved fiber-

matrix interfacial failure rather than matrix failure

• Additives/inclusions improve FT  in some cases

• Alumina nanoparticles improved toughness in UD

CFRPs at 9% conc.

• Elastomeric particles

Kalarikkal, 

Bhavanisankar & 
Ifju, JEMT 2006

Critical strain energy 
release rate- GIc 

Shindo et. al, 

JEMT, 2001, 

Crack

Crack propagates

Betw een plies

Plies

Crack jumps

Betw een plies
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• Unit cell model for a single fiber and surrounding

matrix (~60% volume fraction ):

• Cooled isothermally from 400K to 20K

• Carbon fiber & epoxy matrix (977-2)

• Fiber prevents matrix from shrinking

• Tensile stresses in matrix (polymer) cause micro-

cracks. Failure strength of polymer  ~ 100 MPa*

• Fiber-matrix interface also pre-stressed

Thermal stresses at individual fiber scale (due to cooling):

Fiber

Matrix 
(polymer)

Properties taken from “Choi & Bhavanishankar, Micromechanical Analysis of 
Composite Laminates at Cryogenic Temperatures”, J. Comp. Mat.; 2005
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• Two laminae with  [0/90] ply angles:  worst-case

layup for thermal stresses (0.120 mm thick):

• Fibers prevent contraction along their length.

Matrix contracts more.

• Plies warped out-of-plane in two directions

• Transverse strength of lamina at cryogenic

temperatures: 90 MPa to 120 MPa

Thermal stresses in laminae due to cooling (meso-scale): 

Lamina- 90 

degrees

Lamina-
0 degrees
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• Rotor over-wrap for holding magnets during high-speed

rotation: 0.25m diameter, 0.1 m long

• Carbon-epoxy (IM7/977-2): Layup- [90/45/90/45/90/0/0/0]

• Cooldown from 400K to 20K:

• Interlaminar stresses at edges due to unequal

contraction

• Distortion function of component geometry, ply layup

Thermal stresses at macro-scale i.e. component level :

Fiber

Matrix 
(polymer)

Macro-scale

Structural

Solution

Strains/ 

displacements

Micro-scale
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Challenges and Mitigation methods
• Thermal stresses at micro-scale:

– Choice of fiber (design)

– Higher  strength polymers- with fillers (materials)

– Interfacial strength (materials)

• Thermal Distortion and Failure of component

– Optimize  Layup, ply architecture (design)

– Macro-microscale computational modeling (Mechanics)

– Validated ply-level failure theory for cryogenic temp. (Mechanics)

• Material properties at cryogenic temperatures

– Stress-strain characterization of PMCs at cryogenic temperatures

• Permeability to cryogens: reduced micro-damage, liners

0-90 laminae interface

0-45 laminae interface
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Composites Development for Cryogenic Components: Approach 

Composite Architecture Design:

- Optimization of ply layups

- Selection of ply architectures

- Fiber, matrix & interfacial properties

Multi-scale Computational Modeling

- Account for thermo-structural response across

length scales

- Failure model for resin at cryogenic temperature

- Ply-level lamina failure model

Polymer material development:

- Higher fracture toughness, bond strength

- Inclusions to arrest/deflect crack growth

- Multi-functional properties e.g. thermal

conductivity, magnetic properties

Testing and material properties database:

- Constitutive response for a combination of

polymers, fibers, ply architectures

- Identify failure mechanisms in static and

fatigue  load at cryogenic temperatures

Design of light-weight 

PMC Components for 

Cryogenic applications
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• Polymer matrix composites routinely used in commercial aviation structures for light-

weighting. Applicable to cryogenic regime.

• Cryogenic applications exist, though not widespread.

• In cryogenic regime, weight reductions of 20%-40% have been reported for tanks

• Challenges in adapting to cryogenics:

– Materials (polymers):

• Improvement of polymer capability for toughness, durability

• Multifunctional polymers (thermally conductive, fillers for magnetic permeability)

– Material behavior and properties at cryogenic temperatures:

• Test data for specific systems for static, fatigue and durability

– Computational modeling and Design:

• Multi-scale modeling approach needed, design optimization to reduce thermal

stresses, failure criteria at cryogenic scale

Fiber-reinforced and particle-embedded polymer composites have demonstrated their maturity in 
aerospace. Challenges are in adapting to cryogenics.
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Summary and Challenges/gaps
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