Superconducting Optoelectronic Circuits for Neuromorphic Computing

The NIST Physics and Hardware for Intelligence team

Presented by: Bryce Primavera Workshop on Low Temperature Electronics (WOLTE16) June 06, 2024 Cagliari, Italy

SOENs

Superconducting Optoelectronic Networks

Light for spike-based communication

Superconductors for computation and memory

Superconducting Optoelectronic Neuron

Optical Communication

Superconducting Computation and Memory

Part One: Synapses

Synapse Circuit

Desired Qualities

Single photon sensitivity

Tunable synaptic weight

Leaky integration of synaptic signals

7

Khan, Primavera et al., Nature Electronics (2022)

Synapse Circuit

Desired Qualities

Single photon sensitivity

Tunable synaptic weight

Leaky integration of synaptic signals

Operation

SPD drives JJ over $\rm I_{c}$ upon photon detection

Current is integrated in SI loop

On-chip SQUID readout of I_{si}

Khan, Primavera et al., Nature Electronics (2022)

Fabrication

NIST JJ-SPD Process

14 layers

MoSi SNSPDs (2.3 K)

Nb/a-Si/Nb JJs

MoSi storage inductors

Synaptic Weighting

Weighting and Integration

Part Two: Memory and Programmability

Integrated Superconducting Memory

External current biases are not a scalable solution to synaptic weighting

Can we use the quantization of magnetic flux in superconducting loops as a local, multi-state synaptic memory?

Programmable Synapse Concept

Programmable Synapse

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy. Programmable Synapse

The number of states is set by the inductance of memory loop

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy. Programmable Synapse

"Con-the-Fly" Programming

Synaptic weight can be changed over timescales faster than the integration dynamics

Programming pulses do not disturb existing current in integration loop

Part Three: Multi-Synaptic Dendritic Computation

Multi-Synaptic Circuits

First tests of multiple synaptic integration loops fanning into dendritic SQUIDs

Synapses have independent weights and time constants

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

Dendritic signal is a function of the **delay** between two synaptic events

Common computation within dendritic arbor of neurons

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 56 Sept 2024. Presentation given at WOLTE-16 2024, June 2024, Cagliari, Italy.

Dendritic signal is a function of the **order and delay** between two synaptic events

Important for implementing bio-inspired plasticity mechanisms

Inhibition

Using two synapses with opposite coupling into the dendrite gives inhibitory behavior

Similar schemes can be used for Short Term Plasticity (STP)

Contributors

Sam Adler Sonia Buckley **Jeff Chiles** Saeed Khan Adam McCaughan **Rich Mirin** Sae Woo Nam Ryan O'Loughlin Jeff Shainline Alex Tait