

Progress and Opportunities of the Transient Liquid Assisted Growth (TLAG) method

Teresa Puig¹

X. Obradors¹, R. Vlad¹, E. Pach^{1,4}, C. Pop¹, K. Gupta¹, C. Torres¹, O. Mola¹, A. Kethamkuzhi¹, E. Ghiara¹, V. Bertini¹, M. Voulhoux¹, D. Sanchez², S. Rasi¹, L. Salterilli¹, D. Garcia^{1,3}, S. Ricart¹, M. Tristany¹, R. Yanez³, J. Farjas², E. Solano⁴, L. Simonelli⁴, J. Gutierrez¹

¹ Institut de Ciència de Materiales de Barcelona, ICMAB-CSIC, Spain
² GRMT, Department of Physics, University of Girona, Spain
³ Departament de Química, Universitat Autonoma Barcelona, Spain
⁴ ALBA Synchrotron, Barcelona, Spain

AIM: Design a robust, high throughput and flexible growth method for the manufacturing of CC at competitive cost/performance ratio

Opportunities of TLAG

-High growth rates > 1000 nm/s

-Compatible with low-cost chemical solution deposition (CSD) and others (i.e Low Temperature PLD deposition, LTPLD)

- -Wide processing window
- -Compatible with different Rare Earch (RE) and nanocomposite growth
- -Well-suited for large area fabrication
- -Easily scalable manufacturing equipment

Need of R&D in advanced CC materials

-Generate new ideas and understanding

-Develop breakthroughs that enable high-volume CC production at lower cost/performance

-Fast screening methodologies and AI approaches to guide predictions

-Contribute to making CC production a sustainable and transformative technology

Outline

-Progess in process understanding and processing windows

-Growth rates

-High Throughput Experimentation approach

- -Vortex pinning and overdoping
- -Towards large area Coated Conductors

Inks, pyrolysis and multidepositions in TLAG-CSD

Multifunctional ink Patent EP22382741

Adapted to multideposition with no loss in homogeneity

Also demonstrates for REBCO inks with RE= Y, Er, Gd, Sm, Yb

500 nm

MICMA

EXCELENCIA SEVERO OCHOA

B

Understanding TLAG growth mechanisms through in-situ 2D X-Ray Diffraction (XRD)

TLAG kinetic phase diagram from evolution of phases

Wide processing window further controlled by RE ion

T. Puig – *CCA2025* 6

EXCELENCIA SEVERO OCHOA

Collab. Z. Wu, T. Kiss

(Gd/Y)BCO

10

6

8

9

4

ε

2

1

0

0

x (mm) 5

4 **High Throughput Experimentation using Combinatorial RE Compositional gradients** (Er_xY_{1-x})BCO

7

rich

100% Y

Y/RE

- 0,8000

- 0,6000

- 0,4000

- 0,2000

ູ່ອຸ**100% Er**

1,11 -

2,13 1,62

2,64

(Er/Y)BCO

Reference YBCO

m

λ (ww)

Towards Machine Learning

strategies for J_c prediction

N

T. Puig –CCA2025

0

Scanning Hall Probe Microscopy

EXCELENCIA SEVERO OCHOA

12

m

9

(Patent EP22382741)

ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 59, May 2025. Presentation given at CCA 2025, March 11-13, 2025, Geneva, Switzerland.

Ortex Physics in TLAG Nancomposites

Vortex Pinning anisotropy in TLAG films

Nanocomposites decrease vortex dissipation and induce less anisotropy

, Vortex behaviour depends on T, H, θ and process parameters

T. Puig – *CCA2025* 12

F. Valles et al, Comm Mat 3 (2022)

TLAG Vortex Pinning diagrams $J_c(T) = J_c^{iso-wk}(T) + J_c^{iso-str}(T) + J_c^{aniso-str}(T)$

The overdoped state: Opportunity to increase pinning efficiency

⁶ Towards wide area TLAG Coated Conductors • ELECTRIC

Colloidal Ink scaled ~ liter

Slot die now with 40 mm-width printhead capabilities

Microstructure is reproduced in 250-750 nm CC High superconducting properties: $J_c(77K) = 1.7-2 \text{ MA/cm}^2$

Construction of a furnace for 40 mm-wide tape is on going

T. Puig – *CCA2025* 15

Conclusions and outlook

- TLAG is a high-throughput process, very versatile and with a large processing window that can support large volume CC fabrication while reducing cost/performance ratio
- In-situ Synchrotron techniques are ideal to underpin the TLAG mechanisms
- High Throughput Experimentation with combinatorial gradients and AI should accelerate the selection of compositions and conditions
- Vortex pinning in the overdoped state is the future to achieve higher efficiency due to the increase in condensation energy in a robust way
- TLAG should be a large area processing method that adapts to the needs of increased production as well as opens to new applications

Magnetic Field