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SQUIDs: Then and Now

* SQUIDs: Then
* SQUIDs: Now

* The diversity of SQUIDs
* Ultralow field magnetic resonance imaging
* Cold dark matter: The hunt for the axion
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SQUIDs Then



Brian Josephson Explains Tunneling

Courtesy Brian Josephson
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Flux Quantization
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Josephson Tunneling
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5of 45

Sn-SnOx-Pb
1.5K

CURRENT IN MA
&
T

n
I

Anderson and Rowell 1963



Birth of the Superconducting

Quantum Interference Device (SQUID)
Iy m

— JOSEPHSON CURRENT—»
{ ARBITRARY UNITS )

MAGNETIC FIELD, B in milligouss

* Critical current versus applied magnetic field for two different junction spacings
* Rapid oscillations due to interference, slow oscillations due to diffraction
* Essential physics analogous to two-slit interference in optics

Jaklevic, Lambe, Silver and Mercereau 1964
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Sir Brian Pippard Serves Tea to Lady Bragg

Autumn 1964: Brian suggests that a
SQUID would make an exquisitely
sensitive voltmeter
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Courtesy Cavendish Laboratory
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The SLUG

(Superconducting Low-Inductance Undulatory Galvanometer)
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Voltage

Current I in niobium wire

JC February 1965



The SLUG as a VVoltmeter

Niobium

Voltage noise
10 fVHz 12
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John Wires up a SLUG

Courtesy Gordon Donaldson
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Other SQUID
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Adjustable Niobium SQUID
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Thin-Film Cylindrical SQUID

* Nb-NbOx-Pbln
junctions
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5 mm \

Goubau, Ketchen, JC 1974



SQUIDs Now



Nb-AlOx-Nb Tunnel Junctions

Trilayer process

* Deposit Nb film as base electrode

e Deposit Al film

* Grow AlOx layer thermally in O,

* Deposit Nb film as counter electrode

Standard process for all low-T, electronics

Rowell et al. 1981
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Thin-Film, Square Washer DC SQUID

» Wafer scale process

* Photolithographic patterning

MH\L.

-]

SQUID with input coil Josephson junctions

Ketchen, Jaycox (1981)



Flux Noise in the SQUID
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Superconducting Flux Transformer:

Magnetometer
Closed
superconducting
circuit
B \ —J
| Room
— temperature
| electronics
SQUID

Magnetic field noise
~ 10-15 THz-l/2
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The Diversity of SQUIDs



Quantum Design "'Evercool®’

Coldhead controlled by

/ remote compressor

First stage cools
the shield to 40 K

Second stage cools the
condenser to 4 K

Condenser unit liquefies
the helium gas

Cut-away Dewar View
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High-T, SQUIDs Prospecting for Mineral Deposits

Courtesy Cathy Foley, CSIRO
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Gravity Probe-B

Tests of General Relativity
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* Geodetic effect—
curved space-time due
to the presence of the

Earth

* Lense-Thirring effect—
dragging of the local
space-time frame due to
rotation



MIiniGRAIL: Gravitational Wave Antenna

Leiden University
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 Spherical gravitational wave
detector

* Temperature: 20 mK

* Diameter: 650 mm

* Resonance frequency: 3160 Hz

* Motion coupled to a transducer
that amplifies the motion, and
couples flux into a dc SQUID

* Quantum limited strain
sensitivity: dL/L ~4 x 102!



SPT: South Pole Telescope

 Antarctica 9,500 feet
* 10 meter dish

* 960 Transition Edges Sensors with

multiplexed SQUID readout

* SPT will survey 4,000 square degrees
of sky in the next two years, and is
expected to find large numbers of galaxy
clusters.
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The Bullet Cluster
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CardioMag Imaging System for
Magnetocardiography




300-Channel SQUID Systems for
Magnetoencephalography (MEG)
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Ultralow Field
Magnetic Resonance Imaging



High-Field Magnetic Resonance Imaging
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* Magnetic field By=15T

* Proton NMR frequency
v, =~ 64 MHz

 What if we were to lower
the magnetic field and NMR

- frequency by a factor of 104?



ULF MRI Coil Geometry

_— == B, compensation coil

Low noise cryostat containing SQUID

Gradient coils

ll I-i B, coil (measurement field)
' B, coil (excitation field)

B, coil (prepolarization field)

|I 'I_
oy I
B
I
& |

B, =132 pT
v, = 5600 Hz

* Gradient fields define voxels in space in the same way as in high-field MRI
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Three-Dimensional In Vivo Images
of the Arm
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T,-Weighted Contrast Imaging

* [f two different types of tissue have the same proton density,
a conventional MRI pulse sequence may not distinguish them.

* T, depends strongly on the environment, and can be used
to differentiate tissues types using a T,-contrast pulse sequence.

* T, contrast can be much higher in low fields than in high fields.
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Measurements on Ex Vivo Prostate Tissue

« Malignant prostate removed surgically at UCSF hospital.

* Pathologist cuts two small tissue samples, one healthy and one
cancerous (Blind: we do not know which is which).

» Samples rushed to Berkeley in a biohazard bag placed on ice.
* T,s measured: T,, > Ty

* Specimens are returned to UCSF where the pathologist
characterizes a thin slice of each specimen.
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Contrast (T,, — T,g)/ T, VS. % Difference In
Tumor Content for each Specimen Pair
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* Sufficient for in vivo T,-wighted contrast imaging
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T,-Map of Prostate Slice
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* Tissue identified through histological mapping
» Tissue is healthy unless labeled otherwise

* X +Y: Gleason score of tumors; 5 1s the most advanced
* BPH: Benign Prostatic Hyperplasia

* GPS: Gland Poor Stroma
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* Dark lines indicate histology,
which is performed on a thin slice.
T, map 1s averaged over the
entire thickness.

* Map clearly shows T, contrast



Outlook

» Microtesla MRI has the advantage of significantly higher
T, contrast than high-field MRI.

* Other kinds of cancer: Do other types of tumors show T,
contrast similar to that of prostate tumors?

* New funding to study ex Vivo breast cancer

* National Institutes of Health provided funding to build a
prototype system for In vVivo imaging of prostate cancer.

* Next step: In VIVO imaging
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Cold Dark Matter:
The Hunt for the Axion



Cosmic Microwave Background:
“The Cosmic Rosetta Stone”

Neutrinos 0.6%
Baryons (ordinary matter) 4.6%
Dark Energy (DE) 73%
Cold Dark Matter (CDM) 22%

* Thus 95% of the universe is unknown!
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Cold Dark Matter

A candidate particle 1s the axion, proposed in
1978 to explain the absence of a measurable electric
dipole moment on the neutron

Predicted mass:

m, ~ 1 peV — 1 meV (0.24 - 240 GHz)



Resonant Conversion of Axions into Photons
Pierre Sikivie (1983)

Primakoff Conversion

»—HEMT™ Amplifier

Expected Signal

AV 10+
| 4

Ml e

Power

Frequency
*High Electron Mobility Transistor Need to scan frequency
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Axion Detector at
Lawrence Livermore
National Laboratory

* Cooled to 1.5K
* 7 tesla magnet

Scan Time

Using a HEMT amplifier, time to
scan the frequency range from

0.24 to 0.48 GHz: 270 years

41 0f 45



Noise Temperatures of Two SQUID Amplifiers

Noise temperature (mK)
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* In the classical
limit theory predicts
TyocT

e In the quantum
limit: Ty, = hi/kg

* Closest approach
to quantum limit:

At 799 MHz
Ty =47+£5mK
ToL =38 mK



Scan Time

* Using a HEMT amplifier, time to scan the frequency range from
0.24 to0 0.48 GHz = 270 years.

* The HEMT has been replaced with a SQUID amplifier. With the
system cooled to 50 mK with a dilution refrigerator, time to scan the
frequency range from 0.24 to 0.48 GHz = 100 days.

* A SQUID amplifier was successfully operated on the axion
detector at 1.5 K to demonstrate proof-of-principle.

* G1ven the success of this trial run, the Department of Energy has
funded the 1nstallation of a dilution refrigerator to cool the cavity
and SQUID to 50 mK. This will enable an effective search for the

axion over the energy range 1 — 10 ueV.
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Epilogue

* SQUIDs are amazingly diverse, with applications in
physics, chemistry, biology, medicine, materials science,
geophysics, cosmology, quantum information,........

« SQUIDs are remarkably broadband: 10~* Hz (geophysics)
to 10° Hz (axion detectors).

* The resolution of SQUID amplifiers 1s essentially limited
by Heisenberg’s Uncertainty Principle.

* Microtesla MRI, the axion search, and a host of other
applications, exist only because of the extraordinarily low
noise of the SQUID—which 1n itself seems to be a very tiny
part of the whole system.
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