Recent Research Activities of Applied Superconductivity in China

<u>Liye Xiao, IEE-CAS</u> Dongning Zheng, IOP-CAS Pingxiang Zhang, NINMR Liangzhen Lin, IEE-CAS

Presented at ASC 2016, September 4-9, 2016, Denver, USA

Main Contributors of this presentation

Live Xiao, IEE-CAS **Dongning Zheng, IOP-CAS** Pingxiang Zhang, NINMR, Xi'An Yanwei Ma, IEE-CAS **Qiuliang Wang, IEE-CAS** Hongwei Gu, IEE-CAS Chuangbing Cai, Shanghai Univ. Yijie Li, SH-Jiaotong Univ. Yuan Cai, Suzhou NANO Guo Yan, NINMR, Xi'An **Xiaoming Xie, SIMIT-CAS** Peiheng Wu, Nanjing Univ. Jian Chen, Nanjing Univ.

Liangzhen Lin, IEE-CAS Yusheng He, IOP-CAS Haohua Wang, Zhejiang Univ. Shengcai Shi, PMO-CAS Yuntao Song, IPP-CAS Zi-An Zhu, IHEP-CAS Xiaohua Jiang, Tsinghua Univ Yin Xin, Tianjing Univ Jun Zheng, WHI **Jingye Zhang, IEE-CAS** Wenyong Guo, IEE-CAS Yuejing Tang, HUST, Wuhan Bisong Cao, Tsinghua Univ.

Content

 \equiv

Overview of Research Teams and Financial Support;

Recent Progresses at Materials, Electronics and Large-scale Applications;

Near Future Progresses, Plans or Proposals;

➡ Summary

Research Teams for Materials (11 Teams)

Research Institute or Company	Research Activities		
NIN/Western Superconductor	NbTi, Nb3Sn/Al, BSCCO-2212, 2223, MgB2, YBCO Substrates		
IEE-CAS	YBCO, MgB2, Fe-based Wires or Tapes		
SHJT Univ/Shanghai Supercond.	YBCO by IBAD+PLD		
Shanghai Univ/Shangchuan Supercond.	YBCO by IBAD+MOD		
Suzhou-NANO	YBCO by IBAD+MOCVD		
BUT	YBCO Substrates		
Innova Superconductor	BSCCO-2223 tapes		
Tianjing Hytech	YBCO Film		
GRINM	YBCO Bulk		
Peking Univ	MgB2 Film		
STUE	YBCO Film		

Research Teams for Electronics (10 teams)

Research Institute or Company	Research Activities			
IOP-CAS	SQUID and Application, Microwave Filter, qubit			
Peking Univ	SQUID and application (MCG and other Geophysics)			
SIMIT-CAS	SQUID and application (MCG, Geophysics and ULF- NMR/MRI), Single-photon Detection			
Nanjing Univ	Single-photon Detection, THz, qubit			
Tsinghua Univ/Zongyi Superconductor	Microwave Filter, qubit			
USTC	Qubit, Single-photon Detection			
Zhejiang Univ	qubit			
PMO-CAS	THz			
16th Institute	Filter			
NIM	Voltage standard			

Research Teams for Large-Scale Applications (15 Teams)

Research Institute or Company	Research Activities	
IEE-CAS	FCL, Cable, SMES, Transformer, Electric Machine, NMR, MRI, High Field Magnet, accelerator magnet, Fusion Magnet and other applications	
HUST	FCL, SMES, Electric Machine	
WHI-712	Electric Machine	
Tsinghua Univ	MRI, Cable, FCL, SMES	
Tianjing Univ/Innopower	Cable, FCL	
CEPRI	Cable, SMES, FCL	
NCUEP	Cable	
SWJTU	Maglev	
SICT	Cable	
Western Superconductor	MRI, High Field Magnet	
Hefei-CAS	Fusion Magnet, High Field Magnet	
IHEP-CAS	Accelerator Magnet, MRI, ADS magnet, Magnetic separation	
IMP-CAS	Accelerator Magnet, ADS magnet	
IAEC	cyclotron accelerator magnet	
TIPC-CAS	Fusion Magnet, high field Magnet	
SIAP-CAS	Magnet for FEL, Cavity	

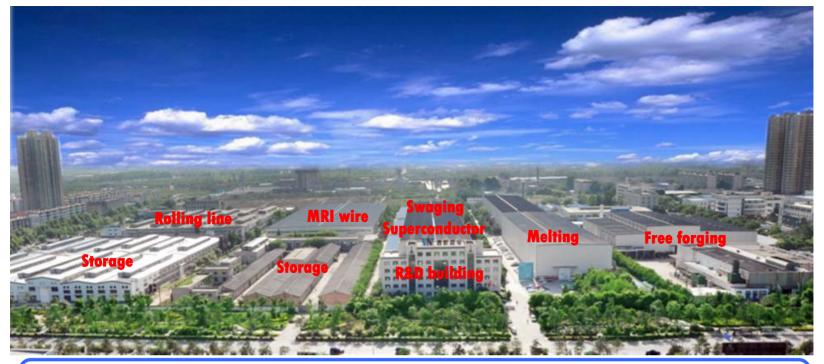
RI Industries in China

- 1.Ningbo Jansen magnetic resonance Technology LTD : MRI magnet and System (0.35-1.5 T)
- 2.Shanghai United Imaging Healthcare LTD: MRI magnet and system (1.5T, 3T)
- 3. Alltech Medical System LTD: MRI magnet and system(1.5T)
- 4.Shengyang Neusoft Medical system LTD: MRI magnet and system (1.5T)
- 5. Xinli Superconductor: MRI magnet and system (1.5T)
- 6. Times medical system LTD , MRI system
- 7. Beijing Wangdong medical equipment LTD, MRI system (0.35T,1.5T)
- 8. BASDA medical system LTD, MRI system
- 9. Liaoning KAMPO Medical system LTD, MRI system (0.35,1.5T)
- 10. Suzhou Lonri Medical system LTD, MRI System (0.35T, 1.5T)
- 11.Xingaoyi Medical system LTD, MRI system (0.35T,1.5)
- 12.Anke medical system LTD, MRI system(1.5T,0.35T)

Financial Supports for Applied Superconductivity in China (last 5 yrs)

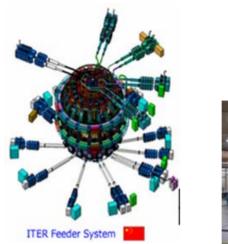
Central Government	863 Plan for Superconductivity (tech), 100M RMB
	973 Plan for Superconductivity (basic), 100M RMB
	National Natural Science Foundation
	China Contribution to ITER & related, 250M RMB
	EAST Project for Fusion in China, 200M RMB
Local Governments	Beijing City Government, 10M RMB
	Shanghai City Government, 50M RMB
Industry Company	China State Power Grid, 10M RMB
	South Power Grid, 30M RMB
	Datang Telecommunication, 20 M RMB
	Zhongtian Group, 30M RMB
	••••
CAS & Institutes	CAS, IEE, IOP, IHEP, IMP, SIMIT, SIAP, TIPC
MRI's Companies	\sim 12 companies for R&D of MRI magnet and system
	Total: \sim 1150M RMB (=175M USD) /last 5 yrs

- Overview of Research Teams and Financial Support;
- Recent Progresses at Materials, Electronics and Large-scale Applications;
- Near Future Progresses, Plans or Proposals;

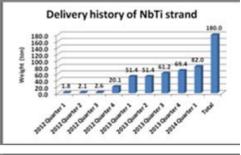


The R&D of Superconducting materials in China

- •LTS for ITER and MRI: Western Superconductor;
- •BSCC0-2223, 2212: NINMR;
- Substrates: NINMR and Beijing Polytechnic;
- •IBAD+MOCVD: Suzhou Nano, IEE-CAS
- •IBAD+MOD: Shanghai University/Shangchuan Superconductor;
- PLD: Shanghai Jiao Tong University/Shanghai Superconductor;
- •MgB2 wires and tapes: NINMR, IEE-CAS
- Fe-based wires and tapes: IEE-CAS.


LTS Materials at Western Superconductor

Western Superconducting Technologies Co., Ltd. (WST) was founded in 2003 in Xi'an City, China and focus on the production of the superconducting strands for ITER project, and NINMR is its largest share holder and the founder institution.

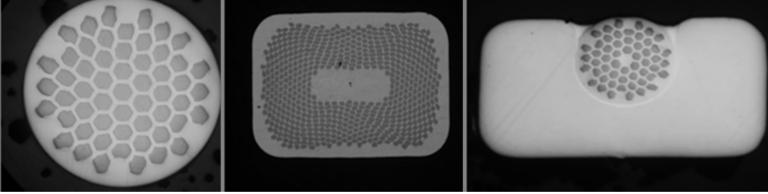

Production capability of Ti alloy and superconductor: 6000 ton ingots of Ti alloy, 3000 ton rods of Ti alloy and 400 ton superconductor per year

China's contribution of superconductors for ITER project

China (WST): 180 tons of NbTi strand 30 tons of Nb₃Sn strand

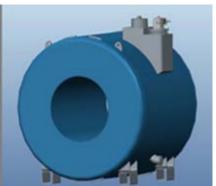


Coils Superconducting v	Companyation	e Weight (t)	Percentage (%)					
	Superconducting wire		CN	EU	JA	КО	RF	US
TF	Nb ₃ Sn	420	7.5	20.2	<i>25</i>	20	19.3	8
CS	Nb ₃ Sn	122			100			
PF	NbTi	224	65				35	
CC/Feeder	NbTi	21	100					


WST: Ultrafine filamentary NbTi strands for ITER

The length of the strand can be reached up to 90km

Typical Cross Section

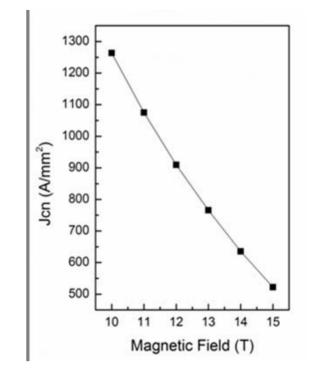


Principal Civil Customers

www.united-imaging.com

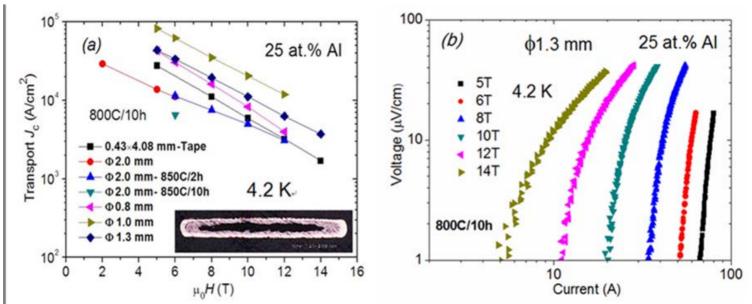
http://alltechmed.com

http://www.xmc.cn


WST: Internal-tin Nb₃Sn Strand for ITER

Strand type	Type 1	Туре 2	Туре З
Cross section			
	Cu split	Cu split	Cu split
Structure feature		Tin spacer	
			37 sub-elements
I _C (A) @4.2K,12T	>250	>280	>270
n value @4.2K,12T	>20	>20	>20
RRR(273K/20K)	>100	>100	>100
$Q_h(mJ/cm^3)$ @4.2K, ± 3T	<300	<340	<320

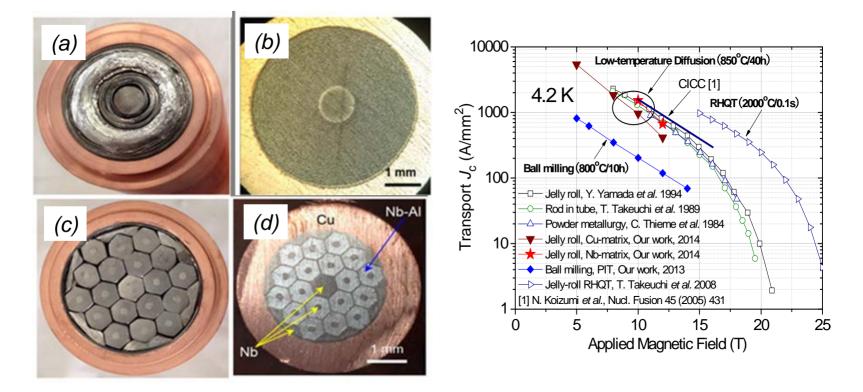
WST: Bronze Nb₃Sn wires


Performance of Nb₃Sn wires with bronze/Nb ratio

	Design 1	Design 2	Design 3
Matrix material	Cu15.5 Sn0.25 Ti		
Filament material	Nb		
Number of filaments	13579		
Bronze/Nb area ratio	2.5	2.2	2.0
Filament spacing (µm)	1.4	1.3	1.2
I, (A) @4.2K, 12T	236	239	244
J _{cn} (A/mm ²)@4.2K,12T	907	923	930
n value	37	36	40

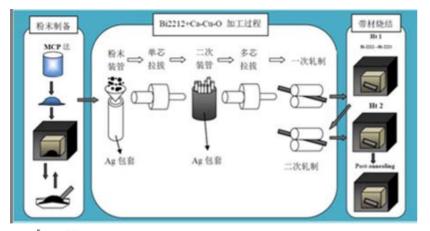
 By optimizing the design, the J_{cn} of bronze Nb₃Sn superconducting wires exceeds 900A/mm² at 4.2K and 12T.

WST: Fabrication of Nb₃Al wire by combing ball-milling and PIT

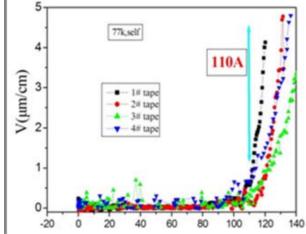


By optimizing the fabrication technique, the transport Jc of Nb_3Al superconducting wires made by PIT method, is up to 10000 A/cm2 at 4.2K and 12T.

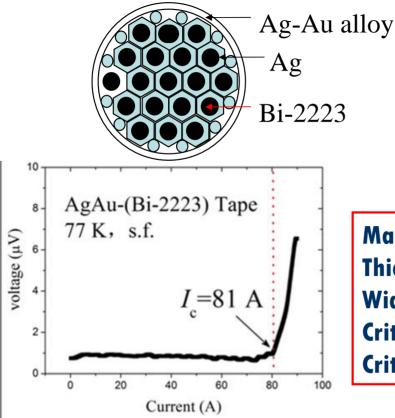
WST: Development of Jelly-roll Nb₃Al



Properties of Nb₃Al wires by two heat-treatment methods:


- (1) Low-temperature diffusion: J_c (4.2K 12T)=670 A/mm²;
- (2) Rapid Heating Quench: Jc (4.2K, 15T)=1000 A/mm², T_c: 17.9-18.0 K, H_{c2}(0): 29.7 T

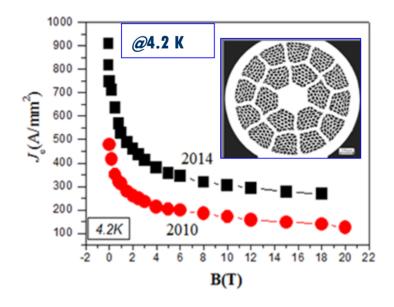
NINMR: Bi-2223 HTS tapes

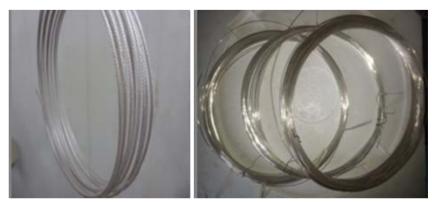


200-500 meters long Bi-2223 tapes fabricated by NINMR: with the Ic of ~100A, $fc=4 \times 10^4 \text{A/cm}^2$ (77K, s.f.)

NINMR: Bi-2223/AgAu tapes for current leads

Used for the design and built of CFETR in China.




Matrix: Ag-Au alloy (5.4 wt. % Au) Thickness : 0.25 mm Width : 4.3 mm Critical Tensile Stress: 50 MPa Critical Current : ~80 A -100A

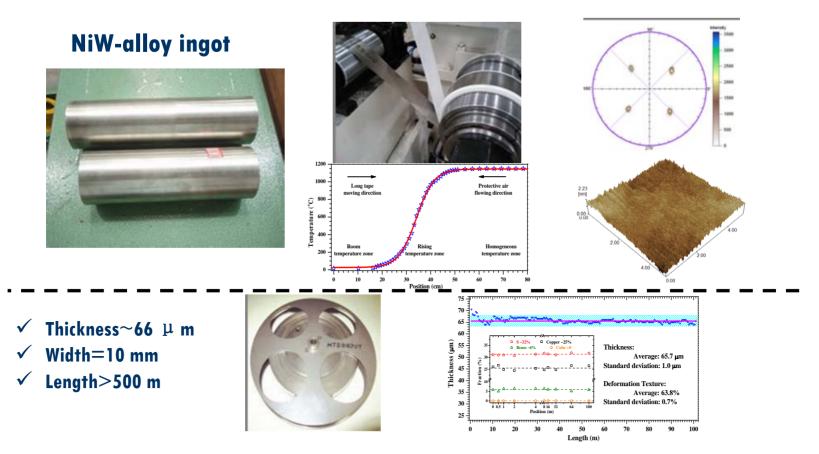
NINMR: Bi-2212 superconducting wires

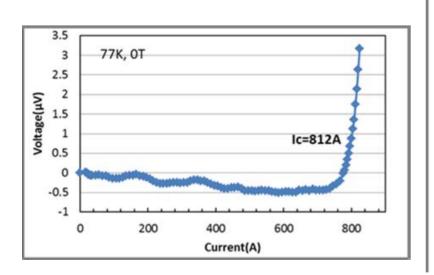
Short samples : k=890 A ke=1100 A/mm² k=5200 A/mm² (4.2 K, s.f.)

Fabrication of 200-m long ⊕1.0mm wires 4.2 K, 0 T: ke ~ 920A/mm², k ~ 4400 A/mm² 4.2 K, 20 T: ke ~ 270A/mm², k ~ 1200 A/mm²

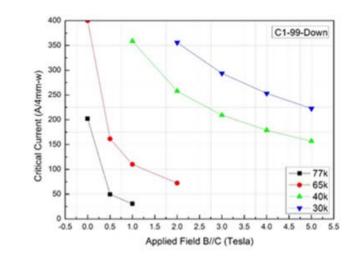
Bi-2212 wires

NINMR: Fabrication of Bi-2212 CICC conductors


First stage	2212 wires	2
	Tension	20 N
Second stage Third stage	Pitch	18-20 mm
	Number of Bi- 2212 wires	2×3
	Tension	20 N
	Pitch	49 mm
	Number of Bi- 2212 wires	2×3×7
	Tension	30 N
	Pitch	90 mm


Bi-2212 cables

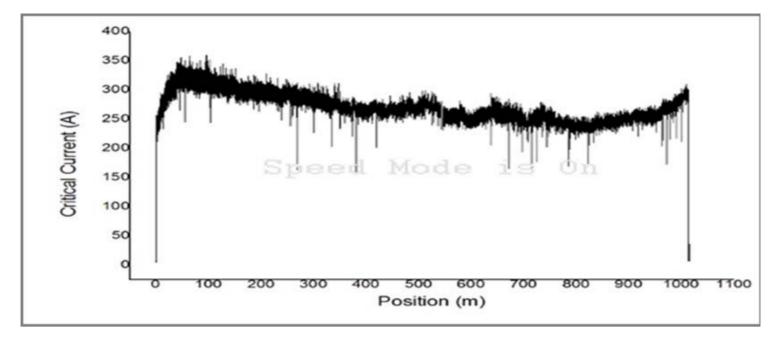
NINMR: Long-length & Textured Ni5W, Ni7W and Ni9W tapes



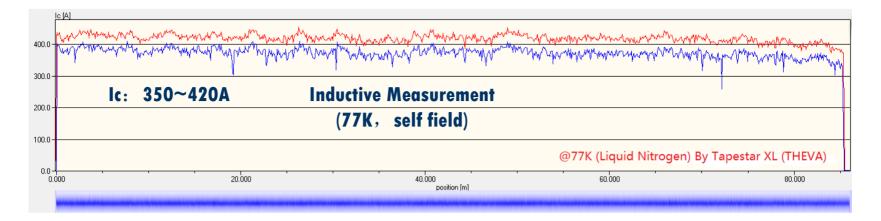
- Sharp cube textured (~100%) Ni5W tapes with the level of hundred meters were obtained by conventional metallurgy method.
- > Content of cube texture in Ni7W and Ni9W tapes reaches 99.5% and 94% respectively.

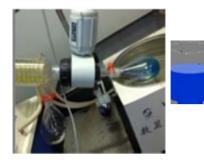
SUZHOU NANO/IEE-CAS: YBCO Coated Conductor by MOCVD

Short sample (12mm-w) at 77 K, self field


Short sample under magnetic field (12mm-w)

Production capability: 1000m, with width of 12mm and thickness of YBCO 1-3 $\,\mu$ m;


SUZHOU NANO/IEE-CAS: YBCO Coated Conductor by MOCVD



Ic_average=280 A @77K

1000 m long YBCO tape fabricated by MOCVD

Shanghai University/Shangchuan Superconductor: YBCO by MOD

Solution Preparation

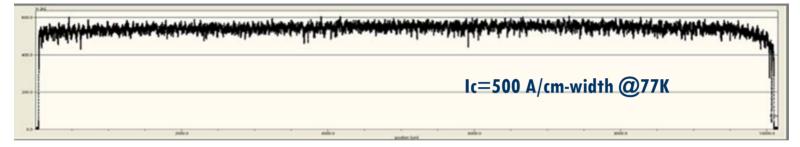
Coating + Low temperature Pyrolysis

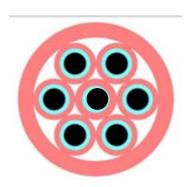
High-temperature Crystallization

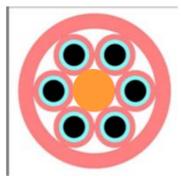
Oxygenation

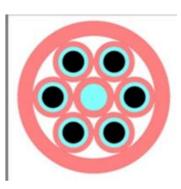
Shanghai University/Shangchuan Superconductor: YBCO by MOD

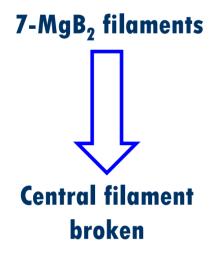
Laminated with Brass and Polyimide Insulating Tapes



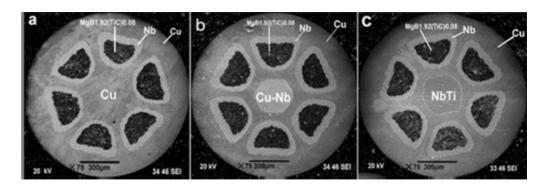

SHJT Univ./Shanghai Superconductor: YBCO by PLD

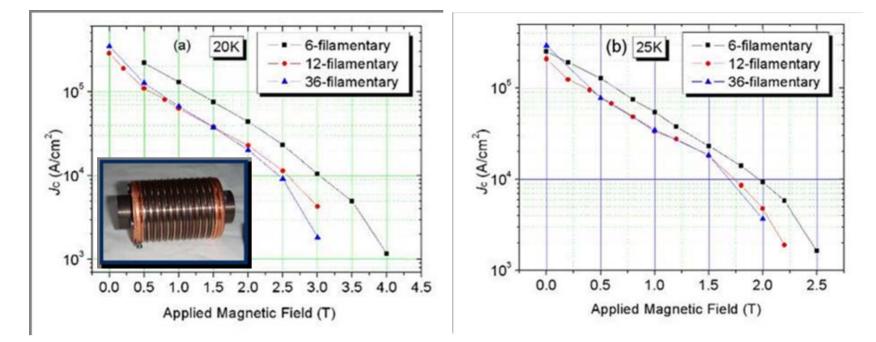





Test of the Jc homogeneity of the 100m long tape

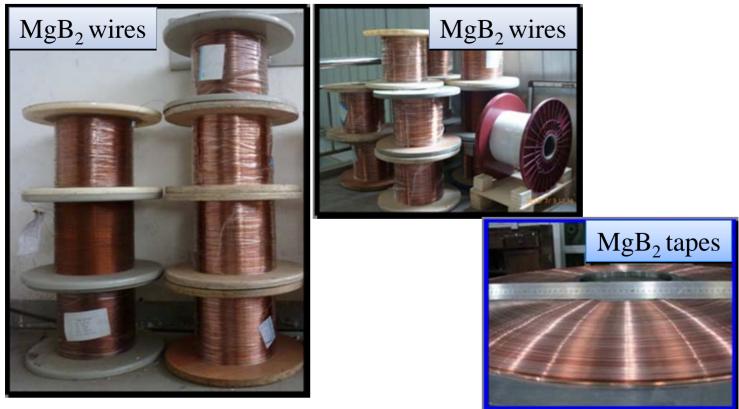
NINMR: MgB2 Wires and Tapes



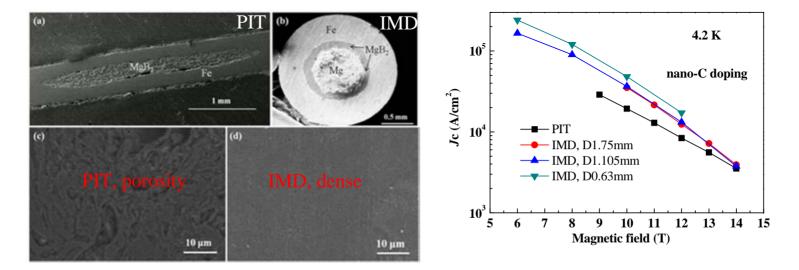

6-MgB₂ filaments +Cu reinforcement

6-MgB₂ filaments +Nb/Cu or NbTi reinforcement

NINMR: MgB2 Wires and Tapes


Superconducting Properties of km-level wires

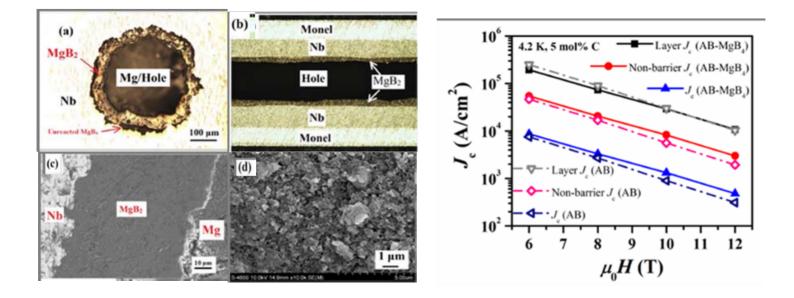
Capability: 1500 meters long MgB₂ superconducting wires At 20 K \sim 2 T, J_c = 4.3 \times 10⁴ A/cm²


NINMR: MgB2 Wires and Tapes

Production of 1500 m MgB2 wires/tapes

The fabrication technology of kilometer MgB_2 wire is stable, and 20 **kilometers** MgB2 superconducting wires have been fabricated.

IEE-CAS: IMD-processed MgB₂ wire fabricated with crystalline boron powders

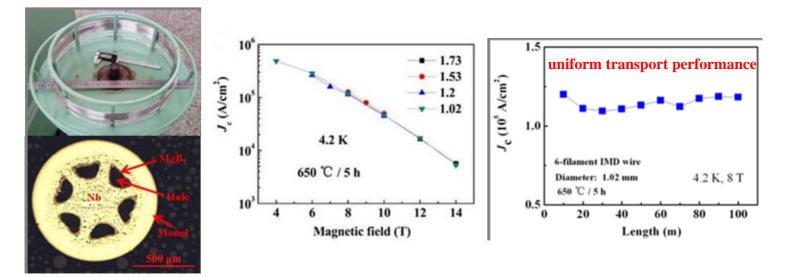

> Compared with PIT-processed MgB₂ tape, the MgB₂ reacted layer of IMD-processed wire presented a better homogeneity.

> The IMD process is also found to be less sensitive to the purity of the boron powders, compared to the PIT method.

>The J_c of 4.8 \times 10⁴ A/cm² at 10 T was achieved for IMD-processed MgB₂ wires fabricated with crystalline boron powders, which is almost comparable to that made by amorphous boron powders.

Wang et al., Supercond Sci Technol, 28 (2015) 105013

IEE-CAS: $IMD-MgB_2$ wires using MgB_4 precursors



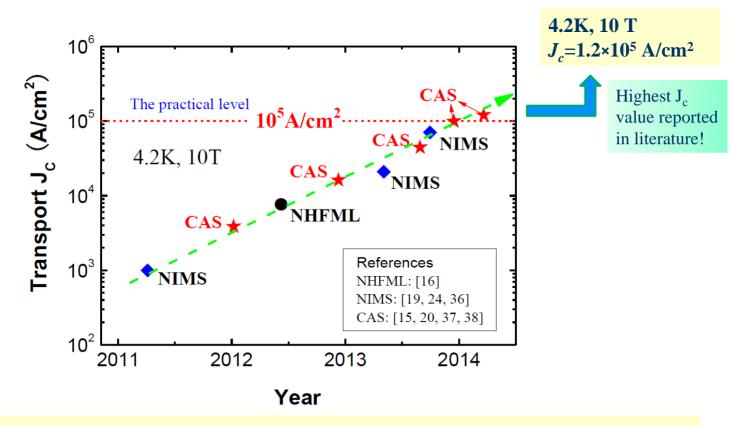
> Monofilament MgB₂/Nb/Monel wires were fabricated using MgB₄ precursors by internal Mg diffusion (IMD) process.

>Compared to the IMD-processed wires fabricated using boron precursors, the engineering J_e of MgB₂ wire made using MgB₄ precursor were enhanced due to the improved grain connectivity and the enlarged fill factor.

Xu et al., Supercond Sci Technol, accepted

EE-CAS: 100 m-class IMD-processed 6-filament MgB₂ wire

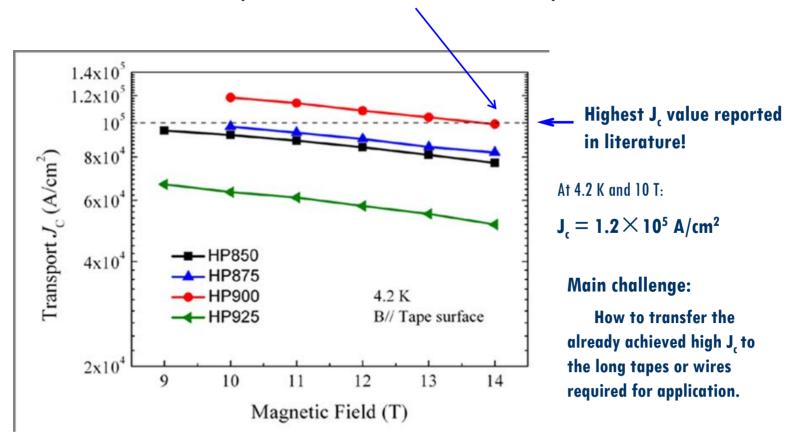
>A 100-m long 6-filament MgB_2 wire was successfully fabricated using internal magnesium diffusion (IMD) process.


> The MgB₂ layer and the sub-filament region are regular, and the J_c values have a fairly homogenous distribution throughout the wire.

>A layer J_c as high as 1.2×10^5 A/cm² at 4.2 K and 8 T was obtained, which was the highest value of the long multifilament IMD wire reported so far, to our knowledge.

Wang et al., Supercond Sci Technol, 29 (2016) 065003

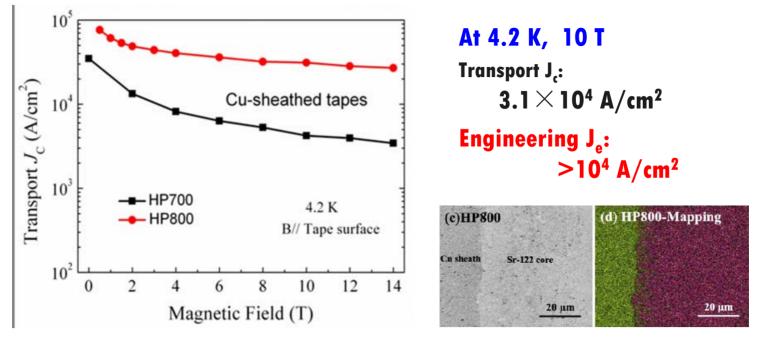
IEE-CAS: Fe-based SrKFeAs-122 (Sr-122) tapes or wires


In last few years, the J, has been rapidly enhanced for Sr-122 wires and tapes

For a Review: Yanwei Ma, Development of high-performance iron-based superconducting wires and tapes, *Physica C* 516 (2015) 17-26.

EIEE-CAS: Fe-based SrKFeAs-122 (Sr-122) tapes or wires

By hot-pressing method, J, values were achieved in Sr-122/Ag tapes: J, $\sim 1.0 \times 10^5$ A/cm² (4.2 K, 14 T)

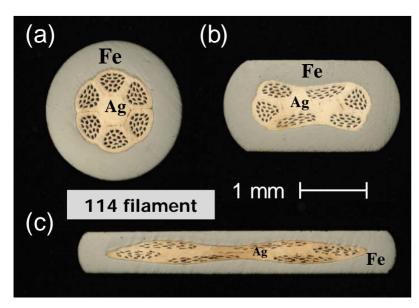


Is there still a room for the J, improvement by hot pressing?

Lin et al., Sci. Rep. 4 (2014) 6944

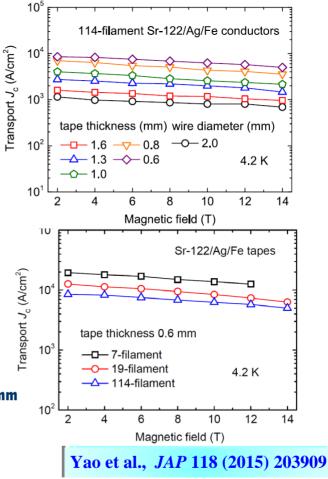
IEE-CAS: Fe-based Sr-122 tapes or wires

Fabrication of Cu-sheathed Sr-122 tapes

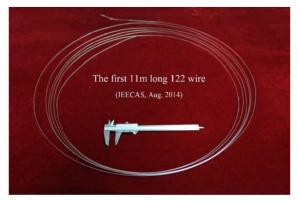


We obtained nearly phase-pure Sr-122 tapes with hot pressing at 800°C for 30 minutes. This rapid fabrication method can effectively thwart the diffusion of Cu into Sr-122 core.

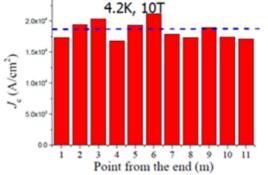
Lin, et al., Sci. Rep. 5 (2015) 11506


IEE-CAS: Fe-based Sr-122 tapes or wires

Fabrication of 114-filament Sr-122/Ag/Fe wires by the drawing and rolling


At 4.2 K, 10 T:

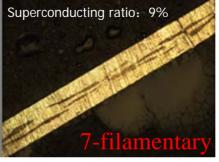
- ♦ 114-core round wires: J_c=800 A/cm².
- When they are flat rolled into tapes, the J_c grows with the reduction of tape thickness. the J_c = 6.3 × 10³ A cm⁻² in 0.6 mm thick tapes.
- 7-core tapes: $J_c = 1.5 \times 10^4 \text{ A/cm}^2$.
- This J_c degradation can be ascribed to the sausage effect.



EIEE-CAS: Fe-based Sr-122 tapes or wires

The first 11m long Sr-122/Ag tape

Uniform wires can be achieved.



8 9 10 11 nd (m)

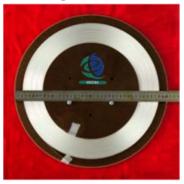
Test coil using 10 m long Sr-122/Ag tape

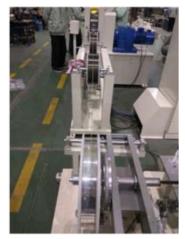
OD: 110 mm ID: 71.5 mm Turns:15×2

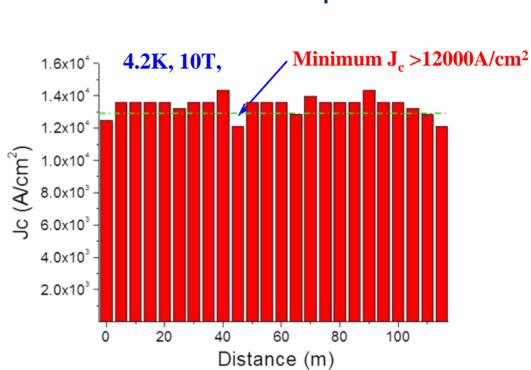
Length: 10 m Thickness: 0.44 mm Width: 3.7 mm Short tape I_c: ~100 A (4.2 K, 0 T)

The minimum $J_{\rm c}$ ~1.7×10⁴A/cm²

The average J_c of this long Sr-122/Ag wire is ~ 18400A/cm²


Ma, Physica C 516 (2015) 17


Significant Progress


IEE-CAS: Latest achievement-the first 100 m long Sr-122 tapes

100m long 7-filament wire

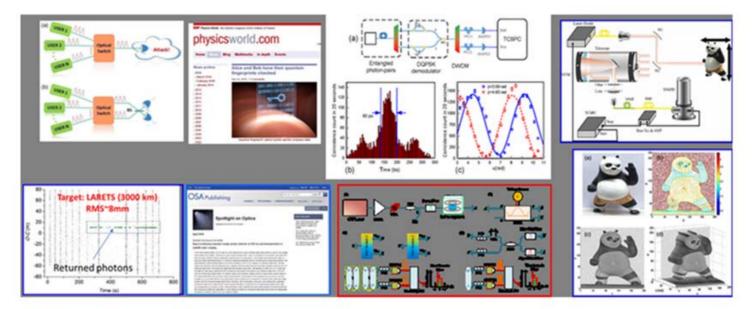
■In Aug., 2016

Transport Jc distribution along the length of the first 100 m long 7-filament Sr-122 tape

Iron-Based Superconductor

Superconducting Electronics in China

Single Photon detectors (SNSPD, TES...)
SQUIDs (MCG, Geophysics, ULF-NMR/MRI...)
MW filters and subsystems
Superconducting qubits
THz
Metrology

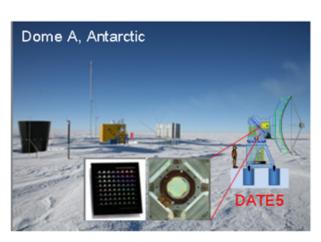

Nanjing University: Superconducting Nanometer-SPD

SNSPDs	Wavelength (nm)	System efficiency (%)	Time jitter (ps)	Repetition rate(Hz)	Detection area (μm^2)	Fiber
SNSPD/Si	1550	60 %	< 50	100 M	10×10	Single mode /multimode
SNSPD/Si	1550	60 %	< 50	50 M	15×15	Single mode /Multimode
SNSPD/Si	1650/ 1550	80% 72%	~ 70	10 M	30×30	Single mode /Multimode
SNSPD/MgF ₂	532-1550 - 2700	> 30% > 1.6 %		40M	10×10	Single mode /Multimode
1×6 SNSPD	1550	> 40%				Single mode

Dark cunt rate: 100 cps Temperature: 2.3K

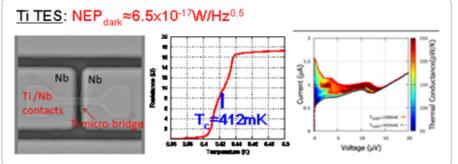
Updated by 31th Dec, 2015.

SNSPD applications

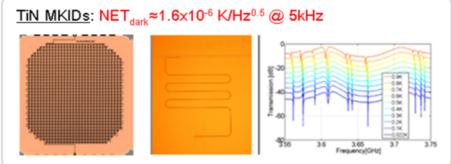

Multiple systems used in

- -MDI-QKD (measurement device independent quantum key distribution)
- -Quantum fingerprinting protocol for quantum communication
- -Quantum source characterization
- -Light detection and ranging (LiDAR)
- -Photon imaging

Jian-Yu Guan et al, PRL 116, 240502 (2016); Hao li, et al, OE, 24, 3535(2015)

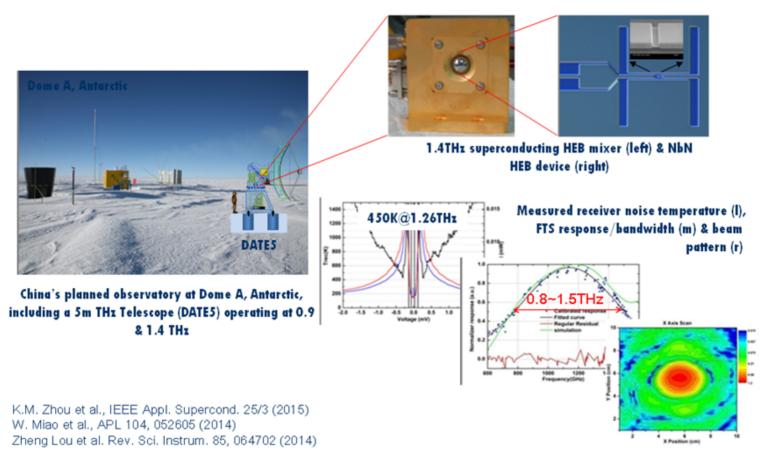

THz Superconducting Imaging Array (TeSIA) Developed for DATE5 Telescope

By Purple Mountain Observatory, CAS

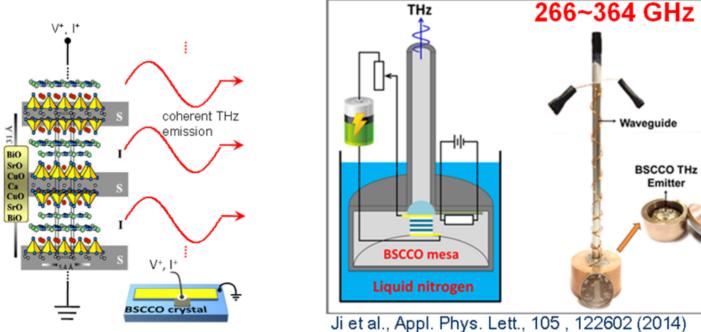


THz Superconducting Imaging Array (TeSIA) Band: 0.9THz/350mm Detector: MKIDs or TES Sensitivity: ~1×10⁻¹⁶W/Hz^{0.5}

S.C. SHI et al., J Low Temp Phys (2015) W. Zhang et al., J Low Temp Phys (2015) J. Li et al., J Low Temp Phys (2015)


Ti TES detector (I), measured R-T (m) & I-V/G-V (r)

32x32 TiN MKIDs chip (I), a single resonator (m) & measured S21 characteristic at different bath temperatures (r, showing a few resonators)


THz Superconducting Hot-Electron Bolometer (HEB) Mixer Developed for DATE5 Telescope

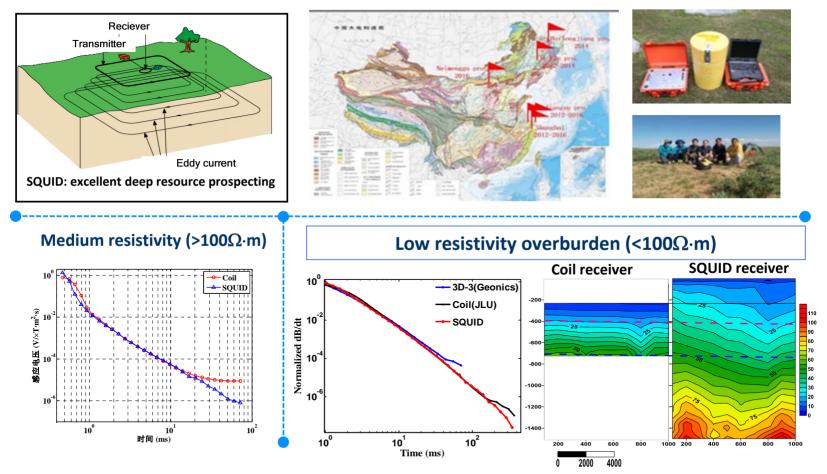
By Purple Mountain Observatory, CAS

anjing Univ: THz torch operated in liquid nitrogen

"While intrinsic 'natural' junctions in BSCCO were discovered well over 20 years ago, the potential for the first truly attractive application as a portable THz source cooled by liquid N_2 has been demonstrated only recently (Hao *et al.*, 2015)" -----Alex I. Braginski, Handbook of SC Materials, Chapter E4.4.3, (2015)

Ji et al., Appl. Phys. Lett., 105 , 122602 (2014) Hao et al., Phys. Rev. Applied, 3, 024006 (2015)

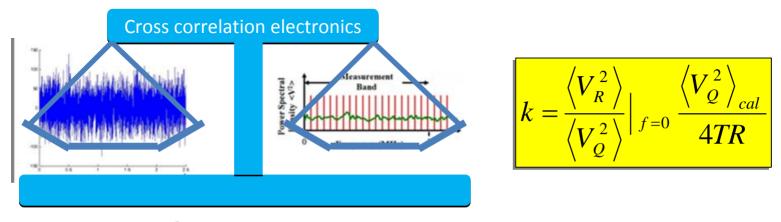
Nanjing Uni., NIMS, and Tuebingen Uni.


IMIT-CAS: MCG system development and applications

4-9 chn SQUID gradiometer based MCG systems under clinical trials

- 4 chn system installation: Shanghai sixth hospital, Beijing 309 hospital
- 9 chn system installation: Shanghai Xuhui and Jiangding central hospitals
- 36 chn SQUID magnetometer based MCG system under optimization
- 4 chn feto-MCG prototype developed

EIMIT-CAS/PKU: SQUID geophysical applications – TEM

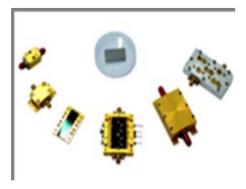

SQUID receiver demonstrates superior capability for high resolution conductivity measurements for both deep and shallow regions compared to coil receiver

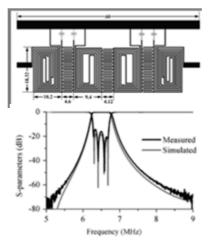
IMIT-CAS: Full tensor system for aeromagnetic

Development for aeromagnetics 1st. Total Field 2rd, Total Field Gradient 3rd, Full tensor gradient 0.1 0.0 System resolution GI(nT/m) < ± 0.05 nT/m -0.0 -0,1 3440 Time (s) 3410 3420 3430 3450 3460 3470 3480 Gradient output(nT/m A 4nT/m geological anomaly detected by FTG system@ 200m 1250 1300 1450 1500 1350 1400 Time (s)

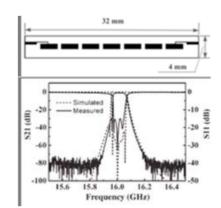
Full tensor system developed by SIMIT

ENIM: Quantum voltage calibrated noise thermometer

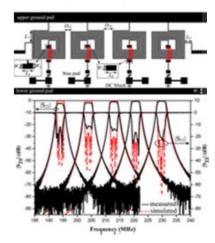

Johnson noise $\langle V_R^2 \rangle$ Quantum voltage noise $\langle V_Q^2 \rangle$


- NIM-NIST collaboration
- Determine k_B through comparing the Johnson noise to the quantum accurate voltage waveform synthesized with AC-Josephson Voltage Standard.
- **Relative uncertainty of 3.9 \times 10^{-6}, contribute to CODATA2014**

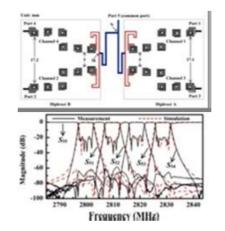
Qu et al., *Metrologia* 52 S242 (2015)


D for HTS filter in China

•HTS filters



HF (6.5 MHz) HTS Filter


Ku (16 GHz) HTS Filter

HTS Tunable Filter

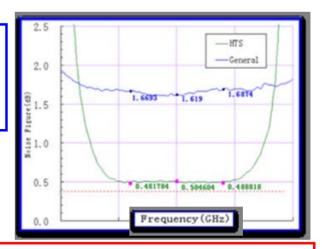
•HTS filter systems

S-band HTS Quadruplexer

Application of the HTS filter in Beijing & Guangzhou

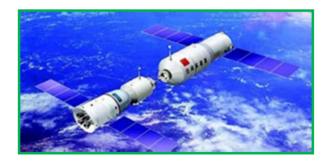
•Field test of HTS filter subsystems in eight CDMA base stations (BTS) in urban area of Beijing

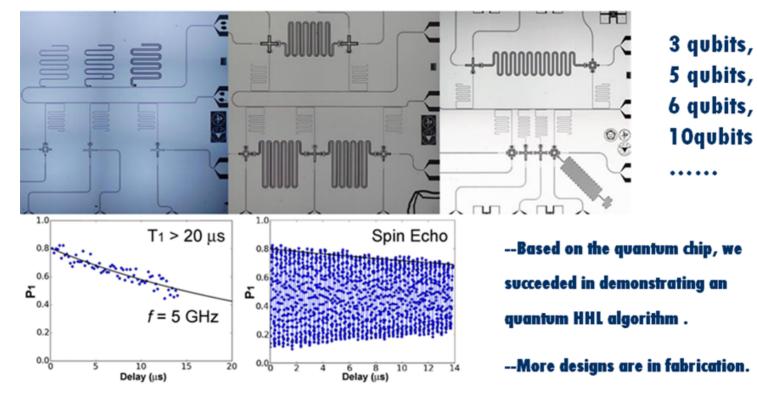
The Mobile mean Tx power decreases 4.2 dB



•Recent years, Development of HTS filter systems for 4G LTE mobile base stations in Guangzhou, cooperating with China Unicom.

IOP-CAS: HTS Microwave Applications in Civilian Satellites


Comparison test between HTS and conventional satellite receiver front-end was carried out in 2005. Results showed a reduction of noise temperature of 73% (from 129 K to 35 K).

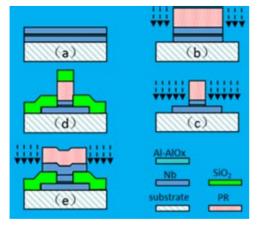


On October 14,2012, our HTS filter subsystem was launched into Space with a Chinese Experimental Satellite (SJ-9). This is the first space experiment for HTS device in China.

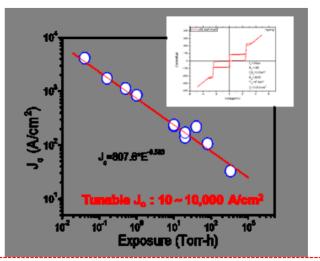
The HTS subsystem as a payload of the Chinese space laboratory has been developed and will be launched in 2016.

OP-CAS/ZJU/USTC: Xmon Qubit

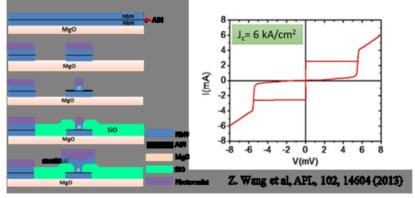
 $\checkmark~$ Xmon qubits: Best T_1 above 20 μs (10 – 20 μs on average),


 T_2^* above 10 μ s (5 - 10 μ s on average).

✓ Single-qubit gate fidelity above 99.5% (RB).


Nat. Commun. 7, 11018 (2016) $T_1 = 10 \ \mu s, T_2^* = 5 \ \mu s$

SIMIT: Nb/AlOx/Nb and NbN/AlN/NbN junctions


Nb/AlOx/Nb tunnel junction with tunable critical current density

X. J. Kang et al., Physica C, 503, 29-32 (2016).

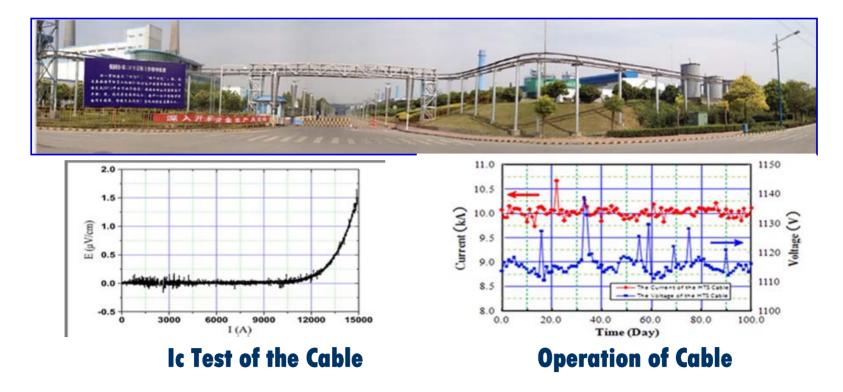
Fabrication of NbN/AlN/NbN tunnel junction

$$V_{g}$$
=5.53mV, $I_{c}R_{N}$ =3.4mV
 V_{m} =68.8mV, R_{sg}/R_{N} =20

Large-Scale Application in China

Power Application;
Fusion Magnet;
Accelerator Magnet;
MRI/NMR;
High Field Magnet;
Other Applications;

EE-CAS: The First Superconducting Power Substation


1MJ SMES

10kV HTS FCL

10kV HTS Transformer

75m/10KV Power Cable

EE-CAS: 360m/10kA DC Superconducting Power Cable

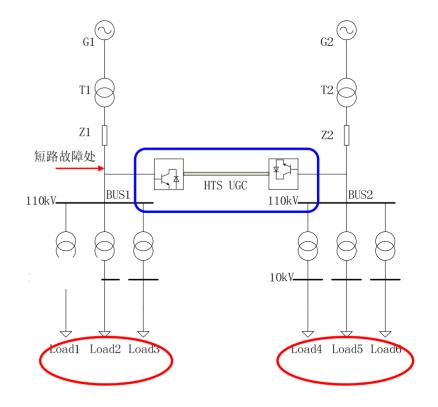
—The Cable was demonstrated at Zhongfu Aluminum Electrolyzer Workshop; —Demonstration shows it can save 65% of transmission losses compared with the conventional cable;

Innopower: 220kV AC-SFCL (Saturated Type)

Parameters	Specifications
Rated voltage (kV)	220
Rated current (A)	800
Rated frequency (Hz)	50
Insulation grade	Α
Impedance at power transmission (Ω)	1.85
Max. prospective fault current (kA)	50
Max. limited fault current (kA)	30
Limiting action time	Immediate
Recovery time (ms)	500
Total weight(t)	120
Installation volume L $ imes$ W $ imes$ H (m ³)	8×8×9

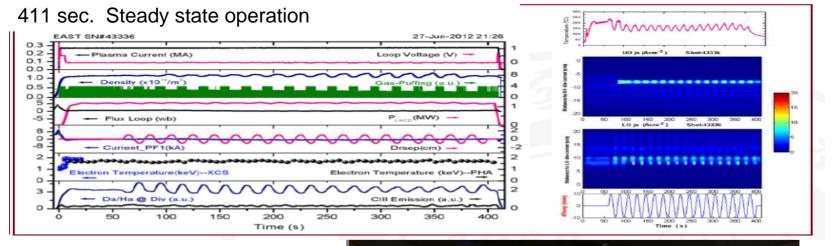
Innopower: 220kV AC-SFCL (Saturated Type)

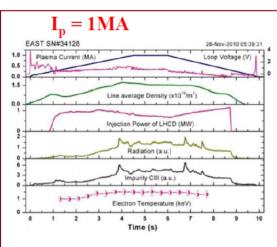
In 2012, the 220kV/300MVA SFCL was manufactured and installed at Shigezhuang substation of Tianjin, in grid operation.

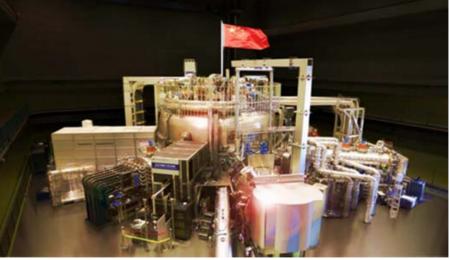

inghua University: Closed-loop Distribution by HTS DC Cables

HTS DC Cables + VSC-HVDC

Advantages:

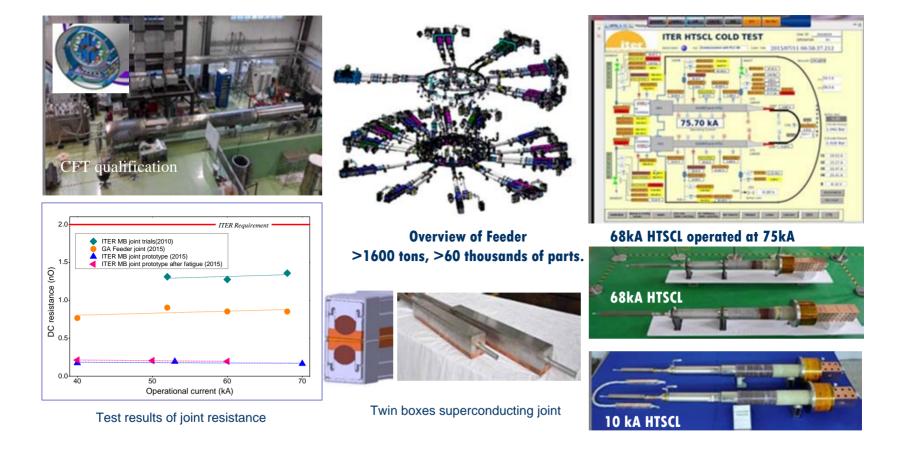

1) reducing backup capacity of 110kV lines;

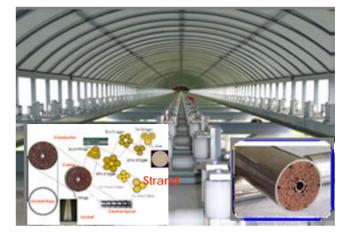

- 2) improving quality of bus voltage;
- 3) reducing oscillations after a fault;
- 4) enhancing reliability and security.



Project is ongoing

IPP-CAS: Experimental Advanced Superconducting Tokamak (EAST)



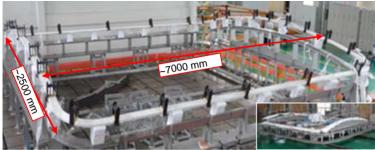

P-CAS: ITER Superconducting Feeder

> The qualified 68kA & 10kA HTSCL, superconducting joint and other key components have been completed, and the feeder has been in fabrication for ITER.

IPP-CAS: ITER Superconducting Conductor

- > TF conductor PA: 11 conductors, 7.5% of ITER TF conductor
- PF conductor PA: 60 conductors of PF/2/3/4 and PF5, 69% of ITER PF conductor;
- Correction Coil (CC) and Feeder conductor PA: 18 CC conductors, 3 Main Busbar and 2 CC Busbar conductors

1000 meters' winding production lines


Winding of PF2/3/4 conductor

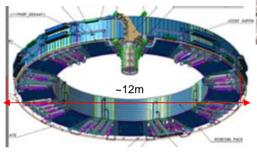
<u>6 TF</u> conductors, <u>15 PF</u> conductors, <u>14 CC</u> conductors, and <u>5 Feeder</u> conductors' production and acceptance test have been completed. <u>26 conductors</u> have been accepted by ITER and delivered.

IPP-CAS: ITER Correction Coil & PF6 Coil

- Composed of 18 coils, made from NbTi superconducting cable.
- > The series production has been started from 2016.

Coil after winding

Dummy coil after VPI

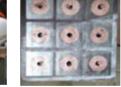


Automatic welding of coil case

Insulation qualification

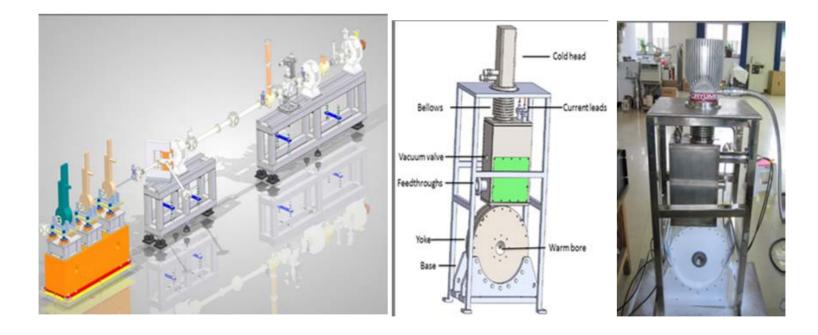
□ ITER PF6 Coil

PF6 Coil (~400tons)



Winding platform

Vacuum chamber for leak check


Short 3*3 trial VPI mock-up

- Short 3*3 trial VPI mock-up which has passed 90kV(acceptance criteria is 5.7kV) high voltage test
- The qualification of dummy coil is on going.

IHEP-CAS:HTS Solenoid Lens for Electron Microscope in Shanghai Jiaotong University

The HTS solenoid magnet is designed to focus the high energy electron beam for the ultra-fast electron microscope.

The double-pancake Bi-2223 HTS coil and iron yoke design, with 2T.

MRI in China: typical products, 1.5T MRI System

	BASDA Bstar-150	AllTech Centauri	Anke SuperNova 1.5T	XGY SuperScan-1.5T	Neusoft NSM-S15
1 🔪 magnet					
Magnetic field	1.5T	1.5 T	1.5 T	1.5 T	1.5 T
homogeneity (ppm)	45 cm dsv < 8ppm	45 cm dsv < 10 ppm	45 cm dsv < 15 ppm	45 cm dsv < 15 ppm	45 cm dsv < 8 ppm
2、 gardient					
Switch rate	130T/m/s	105T/m/s	93T/m/s	110T/m/s	82T/m/s
3、 sequence					-
Imaging matrix	1024X1024	1024 True with standard protocols.	1024X1024	1024X1024	1024X1024
FOV	450mm	400 mm	420mm	440mm	450mm
4、 RF system					
# of channel	8~16	8	8	4	8

MRI in China: typical products, 1.5T MRI System

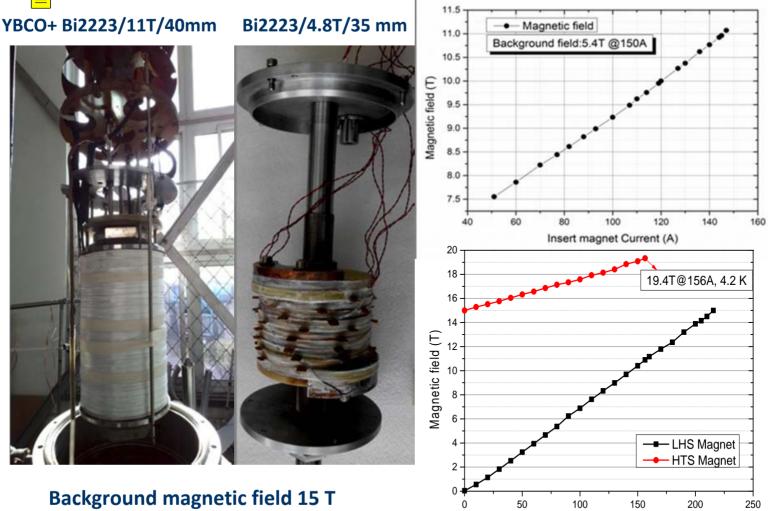
Country	The installed units of MRI / one million people
Japan	38
US/EU	54
Korea	7
China	3

The potential market for MRI in China will be a big number.

Tsinghua University: a 7 T Animal MRI Magnet

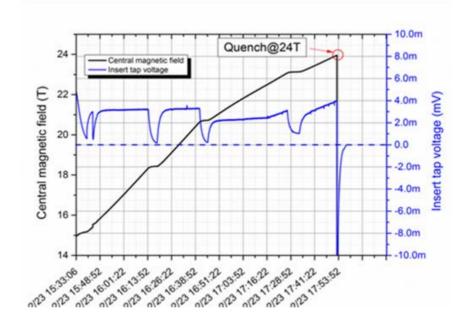
Magnetic Field Intensity : 7.0±0.05T Magnetic Field Uniformity: <5 ppm (80 mm DSV) Air Bore: 160 mm Stability of magnetic field: <0.1 ppm/hr Intensity of gradient: 100 mT/m Gradient linearity: <±5% (80mm DSV) Gradient switching rate: 500 mT/m/ms

IEE-CAS: magnet for NMR with Cryocooler


Zero liquid helium boiling-off Center field from 7-11.75 T

PARAMETERS FOR SUPERCONDUCTING MAGNET		
Magnetic field	11.75T	
Available bore	54mm	
Operating current	103.7A	
Stability of magnetic field	10 ^{-©} /h	
Homogeneity	0.2 ppm in diameter of 50 mm	
5G line in axial	1.8m	
5G line in radius	1.2 m	
Operating temperature	4.2 K	
PTR cooling capacity	1.0W/4.2K	
Liquid helium boiloff	Near zero	
Superconducting wire	Nb3Sn/NbTi	

Bruker	IEE-CAS
400 MHz	400MHz
8 Hz/hr	0.7~4 Hz/hr
Z ₁ , Z ₂ , Z ₃ , X, Y, ZX, ZY, XY, X ² -Y ²	Z ¹ , Z ² , Z ³ , X, Y, ZX, ZY, XY, X ² -Y ²
	53 cm
100 cm	100 cm
651 kg	491 kg
95 /	61
270 days	3 years
14 days	No
58 /	0
Set anti vibration leg	anti vibration leg + inner struct.
	400 MHz 8 Hz/hr Z ₁ , Z ₂ , Z ₃ , X, Y, ZX, ZY, XY, X ² -Y ² 55 cm 100 cm 651 kg 95 / 270 days 14 days 58 /


IEE-CAS: 19.8T superconducting magnet system with HTS insert

IEE-CAS: 24.3T superconducting magnet system with HTS Insert

YBCO Insert in 9 T/40 mm Background B =15 T/160mm

łuaiji City

2000 km

2300 km Quanzhou C

1600 km

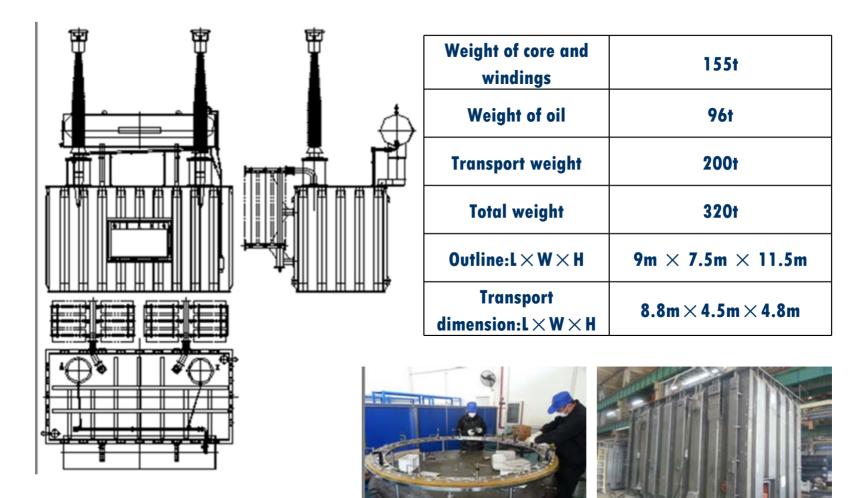
IHEP-CAS: HGMS for kaolin mine purification

lin	Kaolin		Fe%		Ti%		Al%		others		
	Raw ore		0.	.73	0.0)4	37.77		yellow		
	Product		0.	.49	0.01		37.88		Concentration,15% Flow velocity, 3.0cm/s Filling rate,6% dispersant,2‰		
Nepheline syenite		Fe%		Ti%		Al%		others			
Raw ore		8.25		1		/		black			
Product 0#		6.54		0.69		18.81					
(0.5T)		0.54	0.54		0.07		10.01		Concentration,15%		
Product 1#		1.23		0.01		21.18		Flow velocity, 1.5cm/s			
(2.5T)		1.23		0.01		21.10		Filling rate,6%			
Produc	Product 1#		7 0.01		10		00	di	dispersant,3‰		
(5.5T)		0.37		0.01		19.99					

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Plenary presentation 5PL-02 given at ASC 2016; Denver, Colorado, USA, September 4 – 9, 2016.

Content

≣

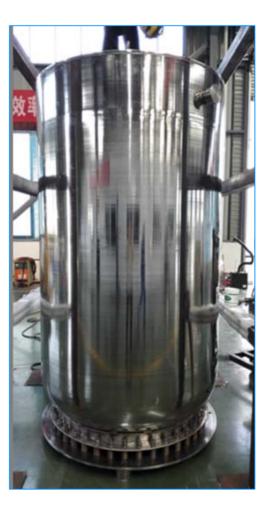

Overview of Research Teams and Financial Support;

 Recent Progresses at Materials, Electronics and Large-scale Application;

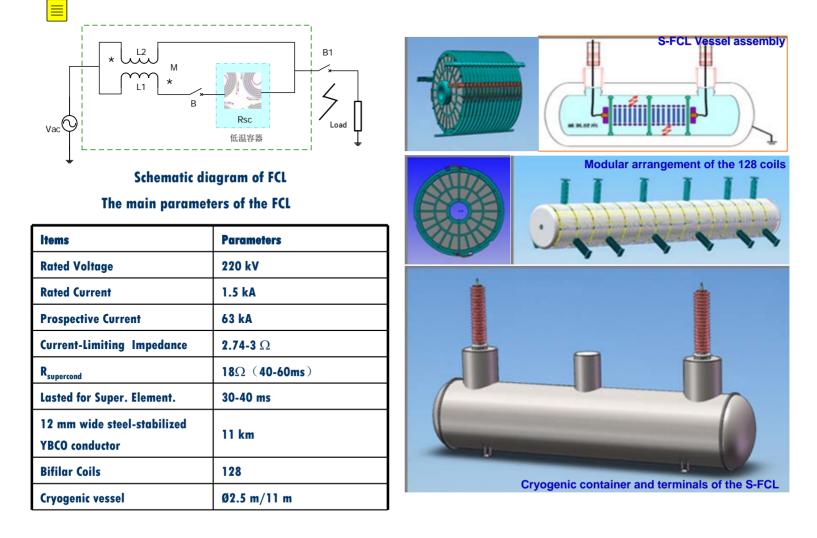
Near Future Progresses, Plans or Proposals;

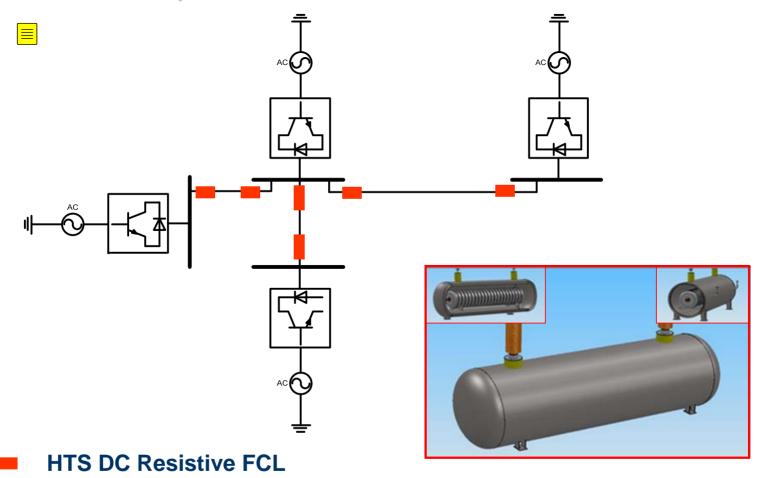

➡ Summary

South Power Grid: 500kV AC-SFCL (Saturated Type)

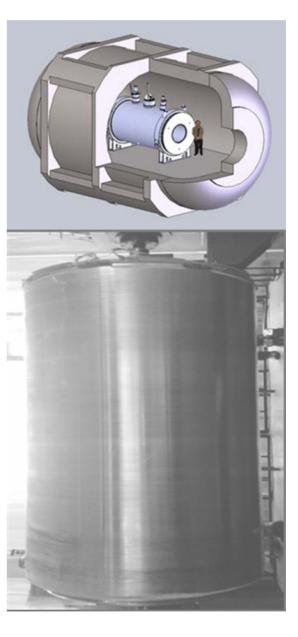


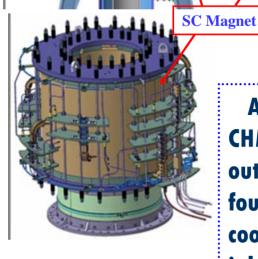
IEE-CAS/Xi'An Electric: 1MJ FCL-SMES for wind power

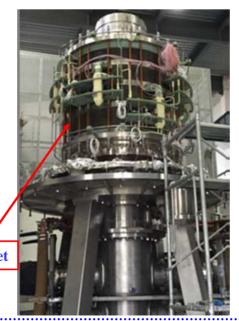

Major parameter: (1)Power rating :1MVA (2)Energy storage capability: 1MJ (3)Operational voltage level: 10kV (4)Fault current limiting rate: ≥ 50% (5)Fault current endurance time: ≥100ms (6)Response time: ≤ 2ms (7)Efficiency: ≥90% (8)Total harmonic distortion: ≤5%

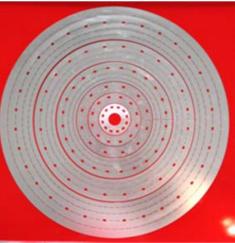


IEE-CAS/Zhongtian Group: 220 kV/1.5kA AC Resistive FCL

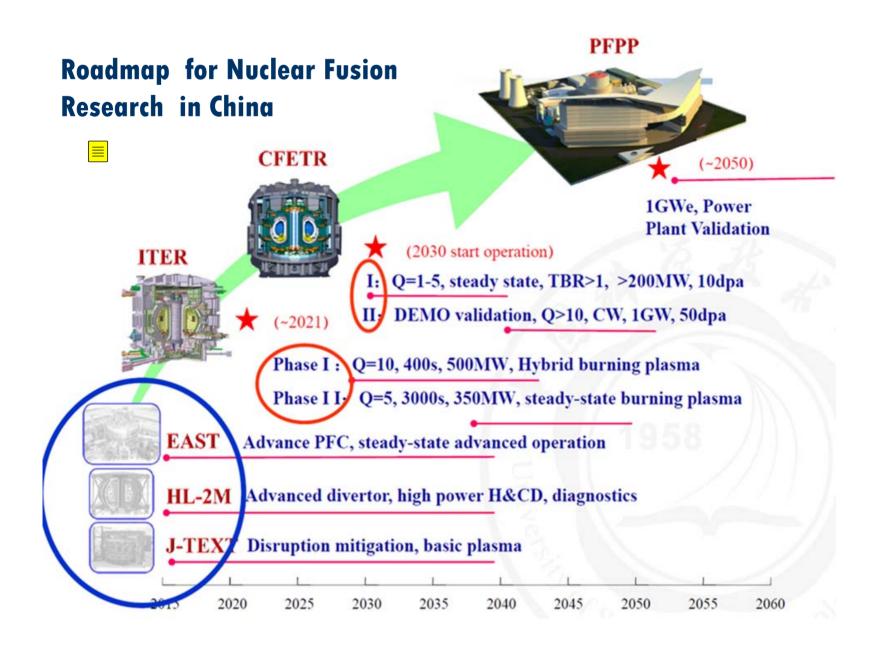

DC Superconducting fault current limiter for VSC-HVDC Grid 160~200kV/1kA


IEE-CAS/IBP-CAS: 9.4 T MRI System


Design of the Magnet


Length of magnet	3500 mm				
Height of magnet	1842 mm				
Center field	9.4 T				
Warm bore	800 mm				
Total turn	118764				
Total inductance	5286 H				
Stored energy	138 MJ				
Volume of LHe	~ 1000 l				
homogeneity	<±0.1ppm(DSV 300mm)				
Stability of field	<0.02ppm/h				
Weight of Magnet	25 ton				

China High Magnetic Field Laboratory-CAS: 45 T Hybrid Magnet



Bitter Disks Six Coils Inner diameter 38 mm Outer diameter 710 mm

A 11T/800mm superconducting outsert of the CHMFL hybrid magnet is being assembled now. The outsert composed of three Nb₃Sn coils wound from four grades of Cable-in-Conduit Conductor (CICC) cooled with forced-flow supercritical helium at an inlet temperature of 4.5 K.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Plenary presentation 5PL-02 given at ASC 2016; Denver, Colorado, USA. September 4 – 9, 2016.

IPP-CAS: China Fusion Engineering Test Reactor (CFETR)

> The conceptual design of magnets has been completed > The R&D of CFETR CS model coil is on going The test of CS Nb3Sn conductor has been completed

Design and analysis of CFETR Magnets

#1810-WUCD WARDO #3850-WUCD1 . LWUCD3 and WLICD

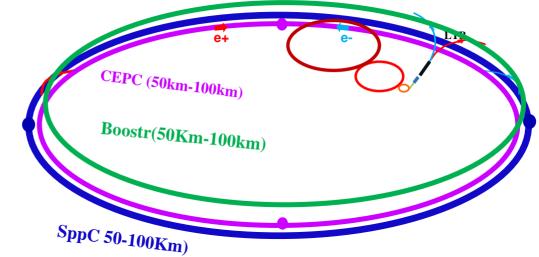
Design and analysis of CFETR Magnets

Design of CFETR CS model coil

Test results of CFETR Nb3Sn conductor

R&D of CS Model coil for CFETR

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Plenary presentation 5PL-02 given at ASC 2016; Denver, Colorado, USA, September 4 – 9, 2016.


China Fusion Engineering Test Reactor (CFETR)

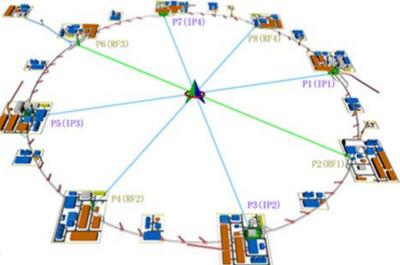
Proposals for high Energy Accelerator in China

--CEPC(Circular Electron-Positron Collider)

--SppC(Super Proton-Proton Collider)

Phase 1: e⁺e⁻ Higgs (Z) factory two detectors, 1M Z Boson & Higgs events in 10yrs E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

Phase 2: a discovery machine; pp collision with $E_{cm} \approx 50-100$ TeV; ep/HI options Discovery machine for Beyond Standard Model

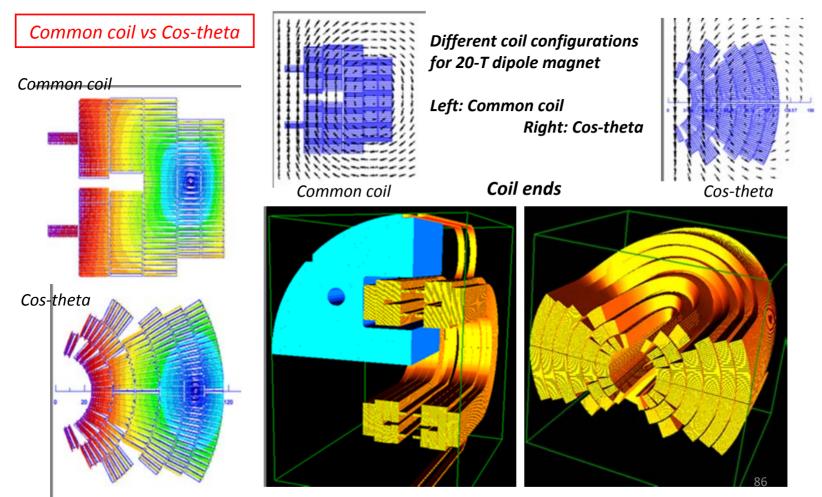

CEPC-SPPC site and schedule Candidate: Qinghuandao)

CEPC

- Pre-CDR studyR&D and preparation work
 - Pre-study: 2013-15 → Pre-CDR by the end of 2014
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021 2027
- Data taking: 2030 2036

SppC

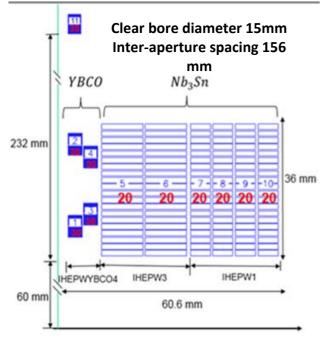
- Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
- Construction: 2036-2042
- > Data taking: 2042 -

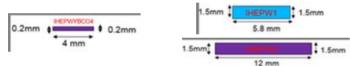


CEPC-SPPC in Qinhuangdao, 50km or 100 km

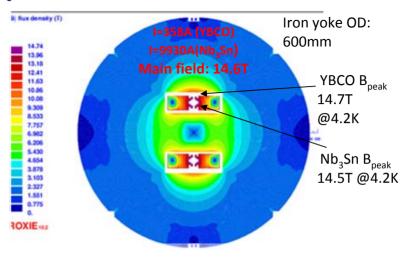
Conceptual Design for SPPC Dipole Magnets

Comparison of different coil configurations


≣


IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Plenary presentation 5PL-02 given at ASC 2016; Denver, Colorado, USA, September 4 – 9, 2016.

Model Magnet Development for SPPC


To fabricate a 14-T dipole magnet (with two apertures) with HTS and Nb_3Sn superconductors, to test the field optimization method of HTS & Nb_3Sn coils.

Coil configuration in the $1^{\mbox{\scriptsize st}}$ quadrant

For per meter of such magnet, the required length of the strand: YBCO: 0.6 Km; Nb₃Sn in total: 9.12 Km

Field distribution in the cross section of the magnet

Main parameters of the cables

Cable	High t	Width-i	Width-o	Ns	Strand	Filament	Insulation				
IHEPW1	5.8	1.5	1.5	14	IHEPWCJC	Nb3Sn	0.15				
IHEPW3	12	1.5	1.5	29	IHEPWCJC	Nb3Sn	0.15				
IHEPWYBCO 4	4	0.2	0.2	1	IHEPWYBCO	YBCO	0				
want parameters of the strands											
Strand	dio	im. cu/sc	RRR	Tref	Bref	Jc@ BrTr	dJc/dB				
IHEPWCJC	0.8	32 1	100	4.2	12	2400	_400				
IHEPWYBCO	-	· -	-	4.2	12	1020	87 40				

Content

- Overview of Research Teams and Financial Support;
- Recent Progresses at Materials, Electronics and Large-scale Application;
- ✓ Near Future Progresses, Plans or Proposals;

Summary

- In China, we have established a completed research system in applied superconductivity, and the research teams cover all aspects of applied superconductivity in materials, electronics and large-scale applications;
- In last five years, China has achieved a lot of progresses in applied superconductivity, and made good contributions in international collaborations such as ITER etc;
- In the future, China will have a big market for superconducting products, and the energy development and scientific research would lead to more challenges and requirements for superconducting technology in China.

Content

Overview of Research Teams and Financial Support;

✓ Recent Progresses at Materials, Electronics and Large-scale Application;

✓Near Future progresses, Plans or Proposals;

✓ Summary

Many Thanks