

Low-energy High-performance Computing based on Superconducting Technology

Nobuyuki Yoshikawa Graduate School of Engineering, Yokohama National University, Japan

The circuit was fabricated using ISTEC standard process (STP2). National Institute of Advanced Industrial Science and Technology partially contributed to the circuit fabrication.

YNU Initiative for Global Arts & Sciences YOKOHAMA National University

Question

What is this?

Outline

- Background and motivation
- Present status of superconducting computing
 - Japanese and US projects
- The minimum energy in computation?
 - Landauer's principle
 - Adiabatic computing and reversible computing
- Adiabatic quantum flux parametron (AQFP)
- Reversible QFP (RQFP)
- Summary

Background

Estimated power consumption to realize an exa-scale computer

> 100 MW

~ \$million/100 MW per year

K computer (Japan) Peak performance: 10.5 PFLOPS Power consumption: 12.6 MW

1st-ranked computers in recent TOP500

http://www.top500.org/

Low-Power Logic Devices is highly demanded.

Energy Consumption in Data Centers

Explosive increase in electric power of data centers

Approaching 10% of total electric power in nations

Facebook Data Center, Lulea, Sweden

Performance: 27-51 PFLOP/s Power 84 MW average (120 MW max)

D.S. Holmes, ISS 2013, Tokyo, Japan.

Energy Consumption in Data Centers

Electric power consumed in 100 searches in the internet

Electric power consumed in ironing a shirt

End of the Moor's Law

Trend of the clock frequency of high-performance processors

Intrinsic Bit Energy of CMOS Logic

After International Technology Roadmap for Semiconductors, 2009 Edition.

Single-Flux-Quantum (SFQ) Circuits

SFQ circuits

Switching energy

$$E = \Phi_0 I_c \sim 10^{-19} \text{ J}$$

CMOS circuits

Switching energy

$$E = QV_{\rm DD} \sim 10^{-16} \text{ J}$$

Energy-Delay Product of SFQ and CMOS

Rapid Single-Flux-Quantum (RSFQ) Circuits

- Pulse height ~ 400 μ V
- Pulse width ~ 3 ps
- Power ~ nW/gate

K. K. Likharev, V. K. Semenov, *IEEE Trans. Appl. Supercond.* 1, 3–28 (1991).

T Flip-flop operating at up to 770 GHz.

W. Chen *et al.*, *IEEE Trans. Appl. Supercond.* 9, 3212–3215 (1999).

256-b shift register operating at 12 GHz O. Mukhanov *et al.*, *IEEE Trans. Appl. Supercond 3*, 2578-2581 (1993).

Power Consumption in RSFQ Logic

12

Energy-Efficient SFQ Circuits

Japanese SFQ Computer Projects

JST-CREST Project (FY2006 - FY2012)

- Leader: Prof. Takagi (Kyoko Univ.)
- "Reconfigurable low-power high-performance processor based on single-flux-quantum circuitry"

JST-ALCA SFQ Project (FY2011 – FY2016)

- Leader: Prof. Fujimaki (Nagoya Univ.)
- "Superconductor electronic system combined with optics and spintronics"
- MEXT-JSPS Project (FY2014 FY2018)
 - Leader: Prof. Yoshikawa (Yokohama National Univ.)
 - Study on Adiabatic Single-Flux-Quantum Circuits Operating in the Thermodynamic Energy Limit

Large-Scale Reconfigurable Data-Path (RDP) Architecture for Accelerator

SMAC: streaming memory

LM:

ORN:

access controller

operand routing network

linear memory

4×4 SFQ-RDP

- ✓ Operating Freq. (Design): 40 GHz
- ✓ Number of Pipeline Stages: 64
- ✓ Number of JJ: 28528
- ✓ Area of Die: 14 mm x 5 mm
- A. Fujimaki et al ASC 2012, Portland.

Achievements in JST-ALCA Project

Institute: Nagoya Univ., Yokohama Nat'l Univ., Kyoto Univ., NICT, AIST

LV-RSFQ Microprocessors

- ✓ Reduced static & dynamic energy consumption
- ✓ Simplified layout design
- ✓ Interoperability with conventional RSFQ

Execute all the instructions stored in the memory around 50 GHz.

100-GHz bit-serial microprocessor

Programmable device using magnetic material

Look-up table based on dual-rail SFQ and ferromagnet See EPo1B-05

RSFQ Microprocessor Development in Japan

Energy-efficient SFQ Processor/FPGA for Data Center

US Computer Projects

- Cryogenic Computing Complexity Program (C3)
- Sponsored by IARPA
- To demonstrate fully functional cryogenic computer
 - 64-bit processors
 - cryogenic RAM
 - > 2 GHz
 - < 1 nJ / FLOP</p>
- 5 years

HYPRES Integrated Memory Process (IMP) (for C3 project and beyond)

First of its kind "Digital+" fabrication process 150 mm wafer process integrating SFQ circuits, nTrons and MRAM devices

The first superconducting parallel 8 bit RISC CPU

NORTHROP GRUMMAN

- Realizable in Lincoln 5ee processes
- Clock is 3.5 GHz
- 10 RQL clocks per instruction
- Can run benchmark algorithms
 - ✓ Fletcher Checksum
 - ✓ Greatest Common Divisor
 - ✓ Integer Divide
 - ✓ Bit Matrix Transpose
 - ✓ Least Common Multiple
 - ✓ Reverse Add

This RQL design is a practical step towards 32-bit SIMD

Resonator Clock Network Powered RQL is Successful in the Test Lab

Outline

- Background and motivation
- Present status of superconducting computing
 - -Japanese and US projects
- The minimum energy in computation?
 - Landauer's principle
 - -Adiabatic computing and reversible computing
- Adiabatic quantum flux parametron (AQFP)
- Reversible QFP (RQFP)
- Summary

Comparison of Energy-Delay Product

Minimum Energy in Computation?

Figure 2 Time sequence of potentials starting at A (for a particle known to be near q = 0) and changing continuously to the deep bistable wells at F.

Adiabatic change of the energy potential of logic: Single well → Double well

Minimum energy dissipation when the "entropy" of information decreases: $\sim k_B T \log 2$

R. W. Keyes, R. Landauer, IBM Journal of Research and Development, 14, 152 (1970).

Landauer's Principle

- Equivalence between thermodynamic entropy and information entropy
- For computation reducing the information entropy, the minimum bit energy, $E_{bit} = k_B T \ln 2$, is consumed.
- For computation conserving the information entropy, there is no minimum limit of bit energy in computation.
- In erasure of results in computation, the bit energy is consumed.

R. Landauer, *IBM Journal of Research and Development* 5, 183 (1961).C. H. Bennett, *IBM Journal of Research and Development* 17, 525 (1973).

Entropy in Information Theory

The decrease of the information entropy when the logical bit information is lost:

$$S = k_{\rm B} \ln 2$$

Helmholtz free energy

$$F = U - TS$$

The change of the thermodynamic energy

$$k_{\rm B}T\ln 2$$

Parametric Quantron

The minimum energy in computation was discussed based on Parametric Quantron.

The minimum energy in computation

$$E_{bit} = \frac{k_B T}{\omega_c \tau \ln[\omega_A \tau p]} \propto f_{clock}$$

Fig. 1. Parametric quantron (a) and its potential energy U as a function of coordinate x (normalized magnetic flux Φ) at various values of parameters $\lambda = (2\pi/\Phi_0)I_ML$ and $f = (2\pi/\Phi_0)\Phi_e - \pi$ (b)-(d). Cross denotes a Josephson junction with the critical current I_M controlled by current I_{c} .

K. K. Likharev, *IEEE Tran. Magn.* MAG-13, 242 (1977). K. K. Likharev, *Int. J. Theoretical Phys.*, 21, 311 (1982).

Verification of the Landauer's Principle using Small Beads

A. Berut et al., Nature, 483, (2012) 187.

Figure 3 | Erasure rate and approach to the Landauer limit. a, Success rate of the erasure cycle as a function of the maximum tilt amplitude, F_{max} , for constant $F_{\text{max}}\tau$. b, Heat distribution P(Q) for transition $0 \rightarrow 1$ with $\tau = 25$ s and $F_{\text{max}} = 1.89 \times 10^{-14}$ N. The solid vertical line indicates the mean dissipated heat, $\langle Q \rangle$, and the dashed vertical line marks the Landauer limit, $\langle Q \rangle_{\text{Landauer}}$. c, Mean dissipated heat for an erasure cycle as a function of protocol duration, τ , measured for three different success rates, r: plus signs, $r \ge 0.90$; crosses, $r \ge 0.85$; circles, $r \ge 0.75$. The horizontal dashed line is the Landauer limit. The continuous line is the fit with the function $[Aexp(-t/\tau_{\rm K}) + 1]B/\tau$, where $\tau_{\rm K}$ is the Kramers time for the low barrier (Methods). Error bars, 1 s.d.

Reversible Computing

- The entropy is conserved during computation.
- No minimum energy dissipation
- Logically reversible

Dose logically reversible computing consume no energy?

$$x = c$$

$$y = cp + \overline{c}q$$

$$z = \overline{c}p + cq$$

Input			Output		
С	р	q	Х	у	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1

q

E. Fredkin and T. Toffoli, *Int. J. Theor. Phys.* **21**, 219-253 (1982).

Example of a CNOT Gate

Logically reversible circuits can be made by using conventional logic.

Physical reversibility is required for reversible computing.

CNOT gate

Inp	out	Output		
С	р	X	У	
0	0	0	0	
0	1	0	1	
1	0	1	1	
1	1	1	0	

Adiabatic and Reversible Computing

Adiabatic computing

- Potential of the system is changed adiabatically
- No nonadiabatic energy dissipation

$$E_{bit} \propto f_{clock}$$

Reversible computing

- Input data can be calculated from output data.
- Number of input = Number of output
- No change in information entropy

Outline

- Background and motivation
- Present status of superconducting computing
 - Japanese and US projects
- The minimum energy in computation?
 - Landauer's principle
 - Adiabatic computing and reversible computing
- Adiabatic quantum flux parametron (AQFP)
- Reversible QFP (RQFP)
- Summary

Energy Potential of RSFQ Circuits

Energy Potential of RSFQ Circuits

Adiabatic operation of the system is required for energy-efficient computing.

Operation Principle of Quantum Flux Parametron (QFP)

E. Goto, Pros. 1st RIKEN Symp. Josephson Electronics, 1984. YNU YOKOHAMA National University

Potential Energy of QFP

M. Hosoya et al, IEEE Trans. Appl. Supercond. vol. 1, 1991, pp. 77 – 89. YNU YOKOHAMA National University

Non-adiabatic and Adiabatic QFP

Evolution of Phase Differences at 4.2 K

Bit Energy vs. Clock Period of AQFP

When rise time is 1000 ps, $E_{\rm bit} = 0.023 I_{\rm c} \Phi_0$ (~ $20k_{\rm B}T$).

→ 1/1000 of RSFQ

N. Takeuchi, et. al., SUST, 26, 035010 (2013).

Bit Energy Measurement of AQFP using a **Superconducting Resonator**

N. Takeuchi, et. al., Appl. Phys. Lett., 102, 052602 (0010)

AQFP Logic Family

AQFP buffer

Layout of AQFP buffer

Majority gate

x = MAJ(a, b, c)= ab+bc+ca **NAND** gate

constant

$$x = MAJ(\overline{a}, 1, \overline{b}) \\ = \overline{ab}$$

Demonstration of AQFP 8-bit Carry-Look-Ahead Adder

Energy per operation

 12 aJ @5GHz
 (cf. Bit energy of a single RSFQ gate: ~10 aJ)

 Designed clock frequency:

 5 GHz

 Junction number:

 1152 (β_c = 5.0)

 Circuit area: 2.7 x 1.7 mm²

The circuits were fabricated using AIST standard process (STP2).

N. Takeuchi et al., J. Appl. Phys. 117, 173912 (2015).

Comparison of Energy Consumption of CMOS and AQFP

	CMOS	AQFP
Device parameters	Technology: 45 nm Supply voltage: V _{DD} = 1.0 V Frequency: f = 2.85 GHz	Technology: 2 μ m (J _c = 2.5 kA/cm ²) Critical current: I _c = 50 μ A, Frequency: f = 5 GHz Inductance: (β_L , β_q) = (0.4, 1.6)
Energy/bit	~1 fJ (~10 ⁻¹⁵ J)	10 zJ (~10 ⁻²⁰ J)

- Energy consumption of AQFP is five orders of magnitude lower than state-of-the-art CMOS devices.
- Further energy reduction is possible by using unshunted junctions.
- Further energy reduction is possible by using high-J_c process.

Outline

- Background and motivation
- Present status of superconducting computing
 - Japanese and US projects
- The minimum energy in computation?
 - Landauer's principle
 - Adiabatic computing and reversible computing
- Adiabatic quantum flux parametron (AQFP)
- Reversible QFP (RQFP)
- Summary

Switching energy of AQFP

N. Takeuchi et al., Phys. Rev. Appl. 4, 034007 (2015).

Reversible AQFP (RQFP)

Reversible majority QFP gate

A logically and physically reversible gate can be achieved by using MAJ and SPL gates.

N. Takeuchi, et. al., Scientific Reports 4, 6354 (2014).

Physical Reversibility of RQFP

Energy Dissipation of RQFP Gate

N. Takeuchi, et. al., Scientific Reports 4, 6354 (2014).

Demonstration of Physical Reversibility

53

Energy-Delay Products of Superconducting Logic

Summary

- Current research activities in Japan and US were reviewed.
- Adiabatic quantum flux parametron (AQFP) is extremely energy efficient logic.
 - ~10 zJ/bit @5 GHz
 - Three orders of magnitude smaller than energy-efficient SFQ logic
 - Six orders of magnitude smaller than CMOS logic
- Sub-k_BT bit-energy operation is possible using AQFP gate with high-Q junctions.
 - ~10 yJ/bit (~ 0.2 k_BT) @100 MHz
- Reversible logic can be realized based on AQFP.

Conclusions

- The superconducting logic is only the technology that breaks through the thermal limit in computation.
- We still have a lot of possibilities for improving the energy efficiency in computation using superconducting circuits.

My Special Thanks to

Dr. O. Mukhanov, Dr. Q Herr, Prof. A Fujimaki, Prof. M. Tanaka

Prof. N. Takeuchi, Prof. C. Ayala, Prof. Y. Yamanashi, Prof. T. Ortlepp, Prof. C. Fourie, Mr. F. China, Mr. N. Tsuji, Mr. M. Narama, Mr. Y. Murai, Ms. Q. Xu and Mr. K. Fang.