

SQUIDs – From ideas to instruments and applications

R. Stolz

Leibniz Institute of Photonic Technology, Jena (Germany)

SQUIDs – From ideas to instruments

- Basics of SQUIDs
 - Types of SQUIDs
 - Technology
 - Cryogenics
 - Electronics
 - Noise
- Applications
 - Non-Destructive test and Evaluation
 - Biomagnetism
 - Geoscience
 - Enabling technologies

jena**photonics**°

Preamble: The beast named SQUID...

acronym SQUID = Superconducting QUantum Interference Device

- transducer for magnetic flux into voltage:
 - ultra-wide bandwidth (> 10GHz demonstrated) from DC,
 - flat transfer function in frequency space,
 - low noise \blacktriangleright approaches quantum limits (< 10^{-30} *J/Hz*),
 - highly linear in terms of period of interference and large dynamic range (>32bit demonstrated),
- requires cryogenic temperatures and environment (dewars or cooling units).

Technology

Leibniz ipht (

Basics on SQUIDs and Superconducting Electronics

Recap: superconductivity and SQUID basics in one slide

Flux quantization

- **1950** Prediction Fritz London: charge e
- **1961** Robert Doll and Martin Näbauer (at the same time and independently) Bascom S. Deaver, Jr. and William M. Fairbank: supra-electrons carry charge of -2e!

L. Goodman, W.D. Willis, D.A. Vincent, B.S. Deaver, Phys. Rev. B 4, 1530 (1971)

$$= \int_{\Sigma} \vec{B} \cdot d\vec{f} = n \cdot {}^{h}/_{2e}$$

$\Phi_0 = {}^h/_{2e} \approx 2.068 nT \cdot mm^2$ magnetic flux quantum

Josephson effects

Brian D. Josephson *1940

dc Josephson effect (1962) $I(t) = I_C \sin[\varphi(t)]$ with $\varphi(t) = \varphi_1(t) - \varphi_2(t)$

ac Josephson effect

 $V(t) = \frac{\hbar}{2e} \frac{\partial \varphi}{\partial t}$ Birth of supercond. Quantum metrology...

ena**photonics** 7

Base of superconductor electronics...

Josephson junction as "transistor"

1963 P. W. Anderson, J. M. Rowell: experimental prove of DC Josephson effect,

1963 S. Shapiro: indirect experimental prove of AC Jospehson effect, Shapiro steps,

I.K. Yanson, W.M. Svistunov, I.M. Dmitrenko and 1965 independently R.E. Eck, D.J. Scalapino, B.N. Taylor & Langenberg: experimental prove of the AC Josephson effect, direct measurement of the microwave radiation.

6

٩A

Z

CURRENT

2

0

Bell Labs

Birth of the SQUID based Quantum magnetometry

1964 R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercerau: invention of SQUID

- maximum supercurrent versus applied magnetic field for two different loop areas,
- rapid oscillations due to interference.

 Φ_{ext}

 C_0

Sn-SnOx-Sn junctions

na**photonıcs**

SQUID types

RF vs. DC SQUID

- single junction SQUID,
- rf current bias and inductive coupling to electronics to measure its impedance,
- simple cryogenics: 2 wires,

•
$$E_n = L_{input} \cdot {I_n}^2 = \frac{{\Phi_n}^2}{L_{input}} \sim \frac{1}{\sqrt{f_{pump}}}$$

- demand for high pump frequency,
- ▶ at 1 GHz, a HTS rf SQUID may have lower noise than a dc HTS SQUID.

- double junction SQUID,
- dc current applied directly to the SQUID,
- various variants to couple electronics,
- more simple to implement wide-band electronics
 - demands sufficient voltage swing of the SQUID.

With courtesy of B. Fagaly

Leibniz ipht

11

Relaxation oscillation SQUIDs: ROS and DROS

- *relaxation oscillation SQUID (ROS)*: a dc SQUID with hysteretic junctions, which is shunted by resistor R_{SH} and inductor L_{SH} in series (comparable to APF circuit, later),
- R_{SH} & L_{SH} properly chosen (Adelerhof et al. J. Appl. Phys. 76 3875 (1994)): relaxation oscillation occurs if ROS biased with dc current above SQUID's critical current,
- flux-to-frequency (frequency modulated electronics) or flux-to-voltage converter; large voltage swings V_{pp} and transfer functions V_{Φ} ,
- V_{Φ} and V_{pp} of ROS increased by using two SQUIDs in series = **balanced** (**double**) **ROS** or **DROS**,
- external flux only applied to sensing SQUID,
- similar to ROSs, DROSs need relaxation oscillation frequencies >1GHz and proper resonance damping for low noise,
- base for simple digital SQUID,
- application: Lee et al. SUST 14 1022 (2001).

nctions, which is APF circuit, later), 5 (1994)): relaxation tical current,

Drung et al. SUST 16 1320 (2003)

Other types

Asymmetric SQUID (by design or bias injection),

Müller et al. IEEE Trans. Appl. Supercond. 10 (2001)

Bi-SQUID

Kornev et al. SUST 22 114011 (2009) Sharafiev et al. Bi-SQUID noise simulation, 2013 ISEC

Double stage SQUID

- double SQUID readout scheme: Koshelets et al. IEEE Trans. Magn. 25 (1989),
- additional flux gain increases V_{Φ}
 - reduce amplifiers voltage noise contribution

• flux gain
$$G_{\Phi} = M_{amp} \frac{\partial I_1}{\partial (i_{In} \cdot M_{In})} \leq 2$$

• characteristics shaped like single SQUID with increased V_{Φ} ,

- higher complexity and more supply lines required,
- leads directly to SQUID operational amplifier (flux offsets and multiple stable bias points
 absolute value of feedback current is unpredictable).

Irwin & Huber IEEE Trans. Appl. Supercond. 11(1) 1265 (2001)

Ruede Diss. TU Berlin, 2008

(a) Three-stage SQUID op-amp circuit

(b) SQUID op-amp symbol

SQUID arrays

- increased output voltage, input resistance & dynamic range,
- highly non-linear V- Φ response,
- high demand for precise technology: "Beat" due to stochastic deviations from the nominally equal loop size and junction parameters
 - idea of SQIF was borne in trial of fabricating high performance HTS SQUID arrays.

SQIFs and SQUAD

- increased output voltage & dynamic range, ullet
- highly non-linear V- Φ response \blacktriangleright high sensitivity, ullet
- 2D-SQIF properties scale N parallel, M series loops •

Output voltage	Μ	maximize
Power gain	M×N	maximize
SNR	M×N	maximize
Spur-free dynamic range	(M×N) ^{2/3}	maximize
Output resistance (50 Ω)	M/N	target value

- HTS SQIF fabrication today with more than 10^6 elements, ullet
- SQUAD SQUID series array with stochastic distribution of inductive coupling lacksquareDrung & Beyer SUST 21(9) 095012 an

(2008).

Serial SQIFs = 1D SQUID series array with unconventional loop size distribution

Parallel SQIFs = 1D array of parallel loops with unconventional size distribution

- double loop SQUIDs (often in multi-loop SQUIDs Drung),
- single resistor shunting (SIEMENS),
- •

jena**photonics**° 17

Technology

Fabrication of Josephson junctions

With courtesy of B. Fagaly

Leibniz **ipht** 🤇

na**photonics** 19

Evolution

~1965 Zimmermann type SQUIDs, bulk niobium

~1975 Bulk-thin film hybrids

1977 J. Richter, K. Blüthner, H.-J. Köhler, G. Albrecht first fully on-chip integrated thin-film DC SQUID in Jena

- clean room fabrication,
- standard photolithography
- - - and > 1Hz,

Todays LTS SQUIDs...

 full wafer-scale & multi-layer process, down to sub- μ m (nm) sized junctions, with suitable readout electronics: - flux noise $< 1 \mu \Phi_0 / \sqrt{Hz}$ at 4.2K

quantum limited at mK temperatures.

Leibniz **ipht** 🤇

SQUID types by material

- Low temperature superconductors (LTS, e.g. liquid Helium cooled):
 - niobium so far best material ($T_C \approx 9.2K$, for 4.2K at $\approx \frac{1}{2}T_C$)
 - only LTS device commercially available,
 - fabrication with reliable parameters \blacktriangleright standardization measures on the way,
 - lab demonstration of NbN devices ($T_C \approx 20K$ e.g. Villigier),
 - carbon nanotube based SQUIDs at mK (Cleuziou et al. Nat. Nanotech. 1 53 (2006)),
- High temperature superconductors (HTS, e.g. liquid Nitrogen cooled or cryo-cooler implemented):
 - YBCO has $T_C \approx 93K$ (for 77K at $\approx \frac{5}{6}T_C$),
 - much larger parameter fluctuations,
 - commercially available devices only based on YBCO,
 - BSCCO ($T_C \approx 110K$) and lab demo of Thallium HTS SQUIDs ($T_C \approx 125K$),
 - MgB₂ (Brinkman et al. APL 79 2420 (2001)) not yet available but may be in future.

SQUID suppliers and manufacturers

- Jülicher SQUID GmbH (Germany)
- Magnicon GmbH (Germany)
- Quantum Design (USA)
- Starcryo Ltd. (USA)
- Supracon AG (Germany)
- Tristan Technologies (USA)
- AIST (Japan)
- Chalmers Uni (Sweden)
- CSIRO (Australia)
- KRISS (Korea)
- PTB (Germany)
- Leibniz-IPHT (Germany)
- National Taiwan Uni

Example LTS SQUIDs Leibniz-IPHT / Supracon AG

- NIST (USA)
- SIMIT (China)
- Sustera (Japan)
- Thales (France)
- UC Riverside (USA)
- VTT (Finnland)

Example Magnicon

• MIT, HYPRESS, SEE QC...

and many more

(sorry and please let me know if I forgot you...)

Example Starcryo SQUIDs

agnicon SQUIDs Leibniz **ipht ()**

ena**photonıcs** 22

LTS vs. HTS SQUIDs

- LTS isotropic, $\xi \sim 300$ Å; HTS anisotropic $\xi_{a,b} \sim 15$ Å and $\xi_c \sim 6$ Å,
 - crossovers with larger dimensions than coherence length of YBCO in c-direction (MgB₂ is isotropic, but smaller: $\xi_{a,b} \sim 7\text{\AA}$ and $\xi_c \sim 2.5\text{\AA}$,)
 - ▶ HTS crossovers with good performance have not been successfully fabricated,
- LTS metallic, malleable; HTS ceramic ► LTS technology mature
 - multi-layer vs. single/dual superconducting layers technology for LTS vs. HTS,
 - LTS can be wound in coils; HTS cannot,
 - LTS coils can be remote from the SQUID sensor,
 - HTS coils are often implemented adjacent to the SQUID,
- LTS coils can be operated in fields up to H_c (9T with NbTi, 20T with Nb₃Sn),
- HTS device performance often degrades in "non-zero" magnetic field amplitudes
 - changing working parameters $(I_c, R_N, I_c \cdot R_N, V_{pp})$,
 - higher white ($\propto \sqrt{H}$) and (more dramatic) low frequency noise,
 - reduced slew rate,
 - some older devices hysteretic in ac fields (μT -amplitude).

LTS vs. HTS SQUID technology continued...

Parameter	LTS SQUID	
Noise	Very low (++)	
Fabrication costs per chip	Low (+)	
Reliability / producibility	Very high (++)	Low (-)
Design flexibility	Very high (++)	
Cooling costs & time	Very high ()	

Cooling is still the main drawback of SQUID sensors!

- HTS is more acceptable; more simple cooling at lower cost,
- cryogen-free cooling will enable many applications,
- cryogenics accepted when performance required (CT or MRI maschines; see application lectures).

D. Drung, Review on SQUIDs , KRYO 2014

HTS SQUID Low (+)Very high (--) eg. JJ degradation Low (-) High (-)

Cooling variants: Dewar vs. Cryo cooler

- consumption of cryogenic liquids costs and availability
- shielding: magnetic and EM noise (metallic vs. magnetic transparent),
- warm-to-cold distances (tail gap),
- dewar vs. closed cycle operation,
- only a few suppliers,
- adds significantly to instruments costs,
- servicing (e.g. vacuum) and reliability,
- safety (handling of liquids).

```
Pictures with courtesy of B. Fagaly
```


- to LTS,
- cool down time,
- shielding,

standard for HTS and more coming

Electronics and noise

What do you encounter by measuring a SQUID signal?

Leibniz Association

jena**photonics**° 27

Question: how to linearize SQUID characteristics?

jena**photonics**®

General scheme – Flux locked loop (FLL) circuit

 $1 \mu \Phi_0 / \sqrt{Hz} \qquad 50 \mu V_{pp} \triangleright 200 \mu V / \Phi_0 \qquad R_{DYN} = 50\Omega$ onics $0.3 \, nV / \sqrt{Hz} \qquad 1 \, pA / \sqrt{Hz} \qquad \qquad \boxed{1 \, pA / \sqrt{Hz}} \qquad \boxed{1 \, PA / \sqrt{Hz}$ Example: SQUID electronics $0.3 \, nV / \sqrt{Hz}$ $1 \, pA / \sqrt{Hz}$

Important parameters for SQUID electronics – dynamics

- max. output signal:
- bandwidth: •

 $\Phi_{FB,MAX} = V_{OUT,MAX} \cdot M_{FB} / R_{FB},$ $f_{3dB} = f_{GBP} \cdot G_{SO} = f_{GBP} \cdot V_{\Phi} \cdot M_{FB} / R_{FB}$

 f_{GBP} forward Gain-Bandwidth-Product of FLL (\approx gain f_1),

- other bandwidth limitations: bandwidth of FLL input voltage noise $S_{V,AMP}$ dead-time t_d
- $\blacktriangleright f_{3dB} \cong 0.8 f_{3dB,AMP}$ ► $f_{3dB} \cong 0.0044 \, (2 \cdot \delta V)^2 / S_{V,AMP}$ ► $f_{3dB} \cong 0.18/t_d$ (5.8 ns/m CAT5e cable)

slew rate of FLL:

 $\Phi_{MAX} = |\partial \Phi_{FB} / \partial t| = 2\pi f_{GBP} \cdot \delta V \cdot M_{FB} / R_{FB}$ and thus, $\dot{B}_{MAX} = \dot{\Phi}_{MAX} / A_{eff}$

Simplified FLL model

D. Drung, SUST 16, 1320, 2003

Analogue FLLs

- flux modulated electronics \bullet
 - 1st implementation: Forgacs & Warnick Rev. Sci. Instrum. 38 214 (1967),
- directly coupled electronics
 - often use bipolar, JFET or SiGe transistors,
 - cryogenic amplifiers:

Mück et al. Rev. Sci Instr. 76 074701 (2005), Robinson et al. Rev. Sci Instr. 75 3169 (2004), Drung et al. (300MHz) IEEE Trans. Magn. 17(2) 699 (2007), Kiviranta et al. SUST 19 1297 (2006),

- system performance limits set by FLL: (e.g. by Supracon AG):
 - $\approx 30mT/sec$, slew rate
 - $\approx 8MHz$, bandwidth dynamic range $\approx 165 dB \left[DNR = 20 \log_{10}(B_{max}/B_{noise}) \right]$
 - adds on to sensor noise floor (e.g. < 10 vs. $20 \, \text{fT} / \sqrt{\text{Hz}}$ for 2.5mm multi-loop magnetometer),
 - system noise often limited by *digitizers noise (24bit ADC)* > digital or hybrid readout schemes.

Drung et al. SUST 16 1320 (2003)

Analogue FLLs, continued

- other amplification / feedback schemes:
 - APF / BCF
 Drung et al. APL 57 406 (1990),

- bootstrap circuit
 Y. Zhang et al. SUST 25(12) 125007 (2012),
- noise cancellation
 Seppä et al. IEEE Trans. Magn. 27 2488 (1991),
- local feedback schemes (e.g. Kiviranta et al. SUST 21(4) (2008)),
- small signal readout without FLL (e.g. OCF Drung et al.
 IEEE Trans. Appl. Supercond.19, pp. 772(2009)),
- SQUID array readout (higher voltage but larger dynamic resistance),
- SQIF amplified readout (unique single peak).

Ruede Diss. TU Berlin, 2008.

Φ

12), (1991),

Digital or flux counting circuits

Digital FLLs:

1) Flux counting electronics McKay et al. Proc. Canadian Conf. on Electrical & Computer Engineering 1090 (1993) Zimmermann et al. Rev. of Progr. in Quant. NDE 16A 2129 (1997) Vrba et al. Biomag 96, Springer 138 (2000) Ludwig et al. IEEE Trans. Appl. Supercond. 11 1122 (2001)

2) Dynamic field compensation (DFC),

3) pure digital FLLs – digital readout of single SQUID, ROS or DROS Drung et al. (1989), Igarashi et al. (1990), Matz et al. (1991), Eschner et al. (1993), Podt et al. (2001), Myoren et al. (2012)

next step digital SQUIDs... but this is another talk...

D. Drung et al. SUST 16 1320 (2003)

Other readout schemes

- ROS electronics,
- RF SQUID electronics,
- MHz and GHz detection,
- Flux ramp modulated readout with large dynamic range
 - S. Kempf et al. at this conference.

ena**photonics** 34

Noise of SQUIDs

- for optimal case $\beta_L \approx 1$ and $\beta_C \approx 1$, numerical simulations resulted in $\epsilon \approx S_{\Phi}/2L_{SO}$ $\epsilon \approx 9 k_B T L_{SQ}/R_0$ or $\epsilon \approx 16 k_B T \sqrt{L_{SQ}C_0}$ [Tesche & Clarke J. Low Temp. Phys. 29 pp. 301 (1977)] for a "bare" SQUID without any parasitic capacitances / resonances in SQUID layout,
- often significant increase of noise $S_{\Phi} \propto 1/f^{\alpha}$ at low frequencies.

Leibniz **ipht** 📿

Low frequency noise in SQUIDs

Prevent flux hopping

 reduction of width of superconducting wiring $B_C \sim 1/w^2$

(Stan et. al. PRL 2004, Kuit et al. PRB 2008),

- moats slotted structures,
 - Du et al. Physica C 400(3) 143 (2004)

- holes or implanted vortex pinning centers,
- nanoparticles as pinning centers.

anhotonics
AC bias techniques

- important in HTS SQUIDs; may be important also for SQUIDs with sub-µm junctions, •
- main cause: critical current fluctuations of JJs \bullet \rightarrow can be mitigated by bias modulation (often combined with flux modulation),
- another mechanism: real flux noise, • in patricular at sub-kelvin temperatures; cause not completely understood; influence of fabrication and SQUID materials \rightarrow bias modulation does not help.

D. Drung, SUST 16, 1320, 2003

naphotonics

So, what are SQUIDs good for?

Radiation Line frequency wave O Hz length length length length length	and volt ice
No for the phase 0.3 Hz 10000 km 0.3 Hz 10000 km 3 Hz 100000 km 16 2/3 Hz 18000 km 50 Hz 6000 km	c field a s (Flux)
Image: Second	nd grav
Image: second	ture
torabortz 300 MHz - 1 m - 1 m - 1 m - 300 MHz - 1 m - 3 GHz - 100 mm - 30 GHz - 10 mm - 30	g & ena
Teranentz Storenza Time - Noise waves 3 THz - 100 μm -<	-free" pı
light 300 THz 1 μm UV light 3x10 ¹⁵ Hz 100 nm 3x10 ¹⁶ Hz 100 nm 100 nm	lexers
Supercise X-rays 3x10 ¹⁷ Hz - 1 nm - 3x10 ¹⁸ Hz - 100 pm - Supercise	onducti
Image: Second	

and many more.

and gravity gradients

ng & enabling technologies

se-free" preamplifier

rconducting electronics

ena**photonics**° 39

SQUID based Lab instruments

Probe configurations

Pictures with courtesy of B. Fagaly

resistance

impedance

magnetization

jena**photonics**° 41

Current sensors and amplifiers

Gradiometric SQUID and signal coupling via integrated thin-film coil

Current sensors

- readout of radiation detectors,
- measurement of beam profiles, etc.,
- $\sqrt{S_I}$ few fA/\sqrt{Hz} ,...

V. Zakosarenko et al., SUST 25, 2012.

Single SQUID amplifiers

- RF-amplifier quantum limited • sensitivity (e.g. Axion and dark matter research - AMORE), 100 MHz ... 10 GHz
- voltmeter, displacement sensors,...

Matlashov et al. Cryogenics 91 125 (2018)

SQUID amplifiers

SQUID arrays

• SQIFs as amp e.g. for MUXes, ...

One example of current sensors

						150
Device name	CN2	CN4	CN8	CN17	CN34	ا <u>ک</u>
						3e [J
No. of input coil turns N	2	4	8	17	34	ltag
<i>L_w</i> [pH]	650	650	650	610	610	D vo
<i>L_{sq}</i> [pH]	170	170	170	160	160] In 50
<i>L_{in}</i> [nH]	10.7	44	174	723	2860	S
$1/M_{in}$ [µA/ Φ_0]						
design	1.60	0.80	0.40	0.20	0.10	
measured	1.57	0.79	0.40	0.20	0.10	
<i>M_{Fb}</i> [nH]	1.5	2.2	4.5	9.8	20.3	100
k _{in}	0.98	0.96	0.95	0.96	0.97	
Intrinsic flux noise	0.55	0.55	0.55	0.58	0.65	
$S_{\Phi}^{1/2} \left[\mu \Phi_0 / Hz^{1/2} \right]$						[^{7]} z 10
Input current noise	0.86	0.43	0.21	0.12	0.065	P ₀ /H
<i>S</i> ^{1/2} [pA/Hz ^{1/2}]						٥ [µd] e
Energy resolution:						noise
ε, uncoupled [h]	5.8	5.8	5.8	6.8	8.5	Jux
ε _c , coupled [h]	6.0	6.3	6.4	7.3	9.1	—

SQUID sensor family with sub-µm cross-type Josephson junctions

0.1 100m

200

Magnetic field detection

Magnetic field sensors

spatial resolution

 \approx **0**. 1 μ *m*

Nano-SQUIDs

- investigation of small spin systems,
- single electron spin flip detection, ullet
- magnetization on small scales,

Pictures with courtesy of D. Kölle and O. Kieler

typ. loop diameter

Optimization

Magnetic properties

- biomagnetism,
- SQUID microscopy,
- susceptometry,

field resolution

several mm...cm

Magnetometry

- geophysics,
- biomagnetism,
- $\sqrt{S_B}$ down to
 - $\approx 0.09 fT / \sqrt{Hz}$.

Leibniz **iph**

Magnetometers

Parameter	Galvanometer SQUID	Washer-SQUID	Flux transform
	Josephson Junctions	Josephson Junctions	Jose Junc

Ketchen et al. J. Appl. Phys. 49 4111 (1978).

Ketchen et al. IEEE Trans. Magn. MAG23 1650 (1987).

Jaycox & Ketchen IEEETrans. Magn. 17 400 (1981). planar coupling scheme

How to derive maximum sensitivity $\left[A_{eff} = \frac{\partial \Phi}{\partial B}\right]_{MAX}$? Leibniz upht \bigcirc

er SQUID Multi-loop SQUID Input Coil phson ctions fractional turn structure

by Zimmermann (1971), thin film devices by Drung at PTB since 1989, review by Drung (1995).

Example

best magnetic field to flux transfer coefficient

Parameter	Galvanometer SQUID	Washer-SQUID	Flux transformer SQUID	Multiloop SQUID
effective area $[mm^2]$	0.071	0.14	0.23	0.305
effective area $[x \cdot A_A]$	$L_{SQ}/(L_A+L_{SQ})$	1.1 <i>d</i> / <i>D</i>	$k_{12}/2\sqrt{L_{SQ}/L_A}$	$\frac{1}{N} - \frac{A_s}{A_A}$
resolution [fT/\sqrt{Hz}]	58	30	18	13.5
Advantages	single layer HTS SQUIDs	simple SQUID design, good for single layer HTS structures,	good matched coupling, low SQUID inductance, RF input filter enabled,	
Disadvantages	more design flexibility than washer SQUID	flux trapping and hopping, not suited for large chips,	resonances, HTS: often flip-chip,	large chip size with low inductance, HTS: difficult to implement.

Chip size: SQUID noise: $2.5mm \ x \ 2.5mm$ $2 \ \mu \Phi_0 / \sqrt{Hz}$

Leibniz Association

jena**photonics**® 47

Record sensitivity of flip-chip flux-transforming magnetometers

Chip and antenna size:

2.5mm x 2.5mm

2.5cm x 2.5cm

<u>Limits:</u>

- chip size limited only by wafer size,
- dynamic range of electronics
 environmental signal amplitudes,
- practicability.

News on wire wound sensors in the talk of R. Körber (PTB Berlin) in this session.

Nondestructive Evaluation

Non-Destructive Test & Evaluation

- Defect Detection in Ferrous and Non-Ferrous Metals
 - Cracks, Voids, Weld inspection
 - Stress, Strain, Corrosion
- Insulating Material Analysis
 - Flaw features < 150 μ m
 - Bridges, Runways, Buildings
 - corrosion in reinforcing rods
 - Embedded sensors
- Aerospace
 - Cracks in wheels and turbine blades
 - Skin corrosion
 - Embedded sensors in composite structures
- Biotech related
 - Food Processing Nanoparticle Detection
 - Pharmaceutical Manufacturing
 - Magnetoimmunoassay (MIA)
- Paleoarcheology

Pictures with courtesy of B. Fagaly

ena**photonics** 50

Biomagnetism

Novel magnetic field sensors for biophotonic applications

Biomagnetism: studies the magnetic field generated in biological tissues of specimens caused by bioelectric currents

> Magnetoencephalography (MEG) > talk of D. Winkler Magnetocardiography (MCG, fetal version - fMCG)

nerve stimuli / conduction, plant responses, bacteria, etc.

Biosusceptometry

Paramagnetic substances concentration in specific organs (liver, heart) measured in applied magnetic field

Ultra- and low-field-MRI

Nuclear magnetic resonance in (relatively) low or zero field

Measurement of Magnetism and Magnetic Matter

Magnetorelaxometry (MRX) Superparamagnetic relaxation (SPMR) Magnetic marker monitoring and detection (MMM) Immuno assay detection or mapping, Scanning microscopy, etc.

Potential for In Vivo ULF MRI Applications

- Imaging cancer: for example, prostate and breast tumors, without the need for a contrast agent,
- Imaging traumatic brain injury (TBI): caused by, e.g. stroke, ullettraffic accidents, high impact sports, combat-related explosions – and monitoring progression of these injuries,
- Integration of MEG and ULF MRI to the benefit of both
 - higher resolution for pre-surgical mapping (e.g. EU project BREAKBEN),
 - MEG and ULF MRI in one sequence (LANL),
- Monitoring progression of Alzheimer's and Parkinson's diseases,
- Measuring elapsed time since stroke (U. of Eastern Finland, UCB),
- Neuronal current imaging in the brain with ULF MRI (PTB Berlin).

JC, Hatridge, Moessle (2007)

Pictures with courtesy of J. Clarke

Bone

Geoscientific applications

Motivation: Task of mineral exploration – "....all easy targets are discovered..."

- 21st Century: increased consumption of mineral raw materials in industrialized \bullet countries and *emerging industrial nations* (e.g. Brazil, India, China, Russia) Image: human society faces new challenges to meet rising demand in longer term,
 - secure, affordable and sustainable mineral supply for industry,
- new character of resources to be discovered: often small size and/or very deeply situated, location in hazardous areas (e.g. sub-arctics, swamp...), disseminated minerals,
- new demands: low impact exploration and exploitation, lacksquareneed new tailored instruments with fast sensors with high resolution as well as new exploration methods for exploration of mineral resources and natural oil/gas.

Exploration methods...

Today's Noise is Tomorrow's Signal

- passive magnetic methods: ► *signal*, but sensor resolution should be sufficient,
- active magnetic methods: ► noise,
 - explore methods to extract weak signals from noise.

Composite amplitude spectrum of geomagnetic variations vs. frequency and corresponding time scales.

Constable, C.G., & S.C. Constable (2004) in "The State of the Planet: Frontiers and Challenges in Geophysics", AGU, DOI 10.1029/150GM13, pp. 147-160.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019.

Demands on sensors and electronics

- extremely high sensitivity and ultra-low noise need quantum or quantum limited sensors $(\sim fT/\sqrt{Hz})$ intrinsic vs. system noise,
- low coloured noise (as low as possible),
- high linearity and slew rate ($\sim mT/s$),
- ultra-high dynamic range (DNR up to 32bit),
- high bandwidth \blacktriangleright up to 50kHz for EM methods,
- small size and weight,
- simple, robust and stable operation in Earth magnetic field ($\sim 100 \mu T$),
- of course as cheap as possible!

Bergbau: Schätze der Erde, Illustrations by Eberhard Reimann

Noise properties: Quantum-limited magnetometers

Optically pumped magnetometers (Caesium vapour based, NVCD based or FRM)

SQUIDs

MFS06: induction coil of Metronix GmbH

Comparative magnetometer test 2012 (comp. test): Chwala et al., SUST 26(3), 035017 (2013).

1

Magnetic Properties

Magnetic properties

Laboratory devices

Laboratory devices

- 1974 start of development of superconducting rock magnetometers (SRMs) using SQUIDs,
- since 1981 first systems available; few hundred systems installed (2G Enterprises more than 135),
- various suppliers: 2G Enterprises, *Quantum Design*, Cryogenics Ltd., FIT, CSIRO, *Neocera* (SQUID Microscope),
- 10⁻¹²Am⁻² magnetic moment with cryo-cooler operation,
- main use Palaeomagnetism study of record of Earth's magnetic field in rocks, sediments, or archeological materials,
- nano-SQUID instruments to study magnetization on small scale,
- well established with cryo-cooling; not too many improvements possible.

Magnetotellurics MT, AMT, CsAMT, AFMAG, RMS or RMT

Installation of SQUID magnetometer, which involves leveling and partial burial to prevent wind vibration

Woodward-Clyde Consultants 1980's

Equipment for MT station setup: SQUID magnetometer, preamp/filter/ telemetry package, antenna, wire for telluric lines, and battery packs

CRT screens in MT-1 van, showing processed data on center screen

Magnetotellurics

- micro-fluctuations of Earth's magnetic field measured with RF SQUIDs by Forgacs and Warnick (1967),
- Jim Zimmermann was next (Geophysics 1975, 40 pp269-84),
- Gamble, Goubau and Clarke (Geophysics, 1979 p.53-68): two simultaneous MT measurements at distance of 4.8km, remote referencing already at this time!
- Harold Weinstock's workshop ahead of its time in 1980, concepts for geophysical use of SQUIDs: EM methods, Rock and Paleomagnetism, Gravimetry,
- Pro SQUID: wideband low-noise receiver with flat characteristics Con SQUID: cryogenics & system costs,
- Options: MT networks, CsAMT (SIMIT China, LTS), RMT / VLF SQUIDs no option so far, Magnetic observatories e.g. LSBB [Gaffet, GJI 2003] or for ALF resonances [Kawai, SUST 2017], AFMAG: see 3D vector magnetometers for magnetic method.

THE BETTER THAN EVER MAGNETOMETER

e 1976, S.H.E. Corporation has been supplier of the most sensitive to use three-axis magnet

est experienced manufacturer of conducting instruments is pleased to

beyond 200 Hz wh

d areas where cultural noise i Aodel GM5X has b sated to redu

arkable new HYBRID SOUID

and Better than Eve

Leibniz ipht 🤇

iena**nhotonics**

MINING FOR DEEPER INSIGHTS

TEM (active)

Transient electromagnetics (TEM)

- demand: wideband low-noise receiver lacksquarewith (a) vectorial characteristsics, (b) flat transfer function [T(f) = const.],
- replace conv. induction coils by SQUID, \bullet
- robust / semi-automatic operation, \bullet
- shield for vibrations and wind noise. \bullet

- high signal slew rate: high-power transmitter (TX), fast TX off,
- imaging of conductivity via inversion of signal amplitude vs. decay time profiles
 - depth in km range!

limitation: dynamic range of available 24bit ADCs, Spatio-temporal sounding with exploration Leibniz **ipht (**

State of TEM receivers

- mature technology already provided by ${\bullet}$ industry,
- why do still R&D on TEM receivers? \bullet
 - deeper and smaller size targets
 - high sensitivity and low frequencies,
 - need less demanding / cheaper technology,
 - LTS and HTS SQUIDs or
 - novel induction coils or in future optically pumped magnetometers (OPMs),
 - need reliable SQUID technology and Josephson junctions,
 - transfer technology to industry (e.g. Supracon AG).

Supracon: JESSY DEEP LTS

CSIRO: LandTEM

TRISTAN Technologies

Jülicher SQUID GmbH

SIMIT and Jilin Univ.

SQUID based instruments for active or passive methods

- LTS multi-loop SQUIDs with scalable sensitivity,
- LTS system noise: $15 / 1.3 fT / \sqrt{Hz}$ configurable, HTS system noise $30 fT / \sqrt{Hz}$ (talk L. Kaczmarek),
- slew rate 85 mT/s, dynamic range 165 dB,
- robust with full automatic control.

Idea: Zimmermann, J. Appl. Phys. 42 (1971) for bulk SQUIDs

Schmelz et al. SUST 24-6 (2011)

	ML2A	ML4.5	ML7	ML12
Outer pickup dimension [mm]	2.0	4.5	7.0	12.2
Loop number	8	8	10	12
A_{eff}^{-1} , meas [nT/ Φ_0]	5.55	1.09	0.57	0.25
Noise [fT/Hz ^{1/2}]	3.0	1.0	0.7	0.33

Former approaches to airborne TEM with SQUIDs

Leibniz IPHT's Airborne TEM approach

- motion noise: dynamic range and dynamic/post-processing compensation?
- technical issues: TX quality, bucking, and slew rate,
- need a new approach.

CSIRO's and BHP's approach

FIG. 4. Smith and Annan

The past and present...

Geomagnetics 3D magnetometry, Gradiometry

Magnetic (passive) method

range dynamic method and Task of magnetic field Magnetic

How to extract signal from noise in Geophysics?

- filter in time or frequency domain (TD, FD),
- filter by ideal signal representation,
- geo-referencing,
- scalar (total field) magnetometry,
- gradiometry

Geo-referencing

Available FTMG instruments

Supracon AG (Germany, LTS) – JESSY STAR

SIMIT (China, LTS) FTMG instrument prototype finished 2015; still in test phase,

CSIRO (Australia, HTS): HTSTG (HTS Tensor Gradiometer) – OCEANMAG rotating planar-type gradiometer – GETMAG

Tristan Technologies (USA, HTS) – T877

ena**photonics** 77
IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-KN given at ISEC, 28 July-1 August 2019, Riverside, USA.

Thanks to D. Hatch, Gedex Systems Inc. Validating the Gedex HD-AGG[™] Airborne Gravity Gradiometer, AEGC2018

Gravity Gravimeters, Gravity gradiometry Figure 1: Originally designed as a three component gradiometer (A, B and C) the current implementation consists of two pairs (B and C) of angular accelerometers oriented vertically, perpendicular to one another. One balance beamtype accelerometer is labelled.

Gravimetry

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-KN given at ISEC, 28 July-1 August 2019, Riverside, USA.

Enabling and emerging technologies

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-KN given at ISEC, 28 July-1 August 2019, Riverside, USA

Multiplexers using SQUIDs as preamplifier

Time-Division Multiplexing (TDM)

- low technical complexity,
- increased noise (aliasing),

Frequency-Division Multiplexing (FDM)

high efficiency, complex frequency generators and filters,

News e.g. in the talk of S. Kempf (Uni Heidelberg) in this session

Code-Division Multiplexing (CDM)

- no noise aliasing,
- reasonable complexity.

Epilogue

- SQUID based Quantum magnetometers are a mature technology,
- SQUIDs are relative and broadband $(10^{-4} 10^{+9}Hz)$ receivers with high sensitivity and resolution; at low temperatures, resolution of SQUID amplifiers is essentially limited by Heisenberg's Uncertainty Principle,
- wide range of applications enabled by the extreme resolution of the SQUIDs in physics, chemistry, biology, medicine, materials science, accelerator science, geoscience, cosmology, quantum technology and many more,
- SQUIDs in mineral exploration already a success story in discovering new targets; new instruments should be light-weight, streamlined, reliable bunmanned platforms,
- main hurdles: cryogenics small-size, low-power and cost coolers, overall system costs, safety and reliability,
- competition in some applications will getting harder since new types of Quantum magnetometers under development (OPM, NVCD, FRM); but in some applications SQUIDs are the enabling factor (especially if cooling is already used).

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-KN given at ISEC, 28 July-1 August 2019, Riverside, USA

Thank you for attention. Questions?

Teams of Magnetometry, **Quantum detection and KMNT of Leibniz-IPHT**

Team at Supracon AG

The work was funded by **German Federal Ministry of Education and Research:** DESMEX (grant No. 033R130) HITEM (grant No. 033R164) QTEM (grant No. ZF4006813AB8)

Bundesministerium für Bilduna und Forschung

The work was partly funded by the European Community: **QMAG (grant No. 01QE1710)** AMTEG (grant No. 033RU001B)

John Clarke (UC Berkeley) **Bob Fagaly (Honeywell Inc.)** Dieter Kölle (Univ. Tübingen) **Oliver Kieler (PTB Braunschweig)**

..........

..........

