Formation and Growth of Oxide Nanoparticles During Nb-Sn Diffusion and Implications for Flux Pinning and Critical Current in APC Nb₃Sn

Jacob Rochester, Gabriel Calderon-Ortiz, Yuchi Wang, Yunzhi Wang, Michael Sumption (The Ohio State University)

Xingchen Xu, Fang Wan (Fermilab)

Xuan Peng (Hyper Tech Research, Inc.)

This work was supported by the US Department of Energy, Office of High Energy Physics, SBIR Phase I & Phase II Grant No. DE-SC0013849, DE-SC0017755, DE-SC0019816 & Fermilab LDRD.

Electron microscopy was performed at the Center for Electron Microscopy and Analysis (CEMAS), Ohio State University, USA.
Motivation

• Internally oxidized Nb$_3$Sn forms nano-oxide pins (refines grains and pins flux)
 – Shown to increase J_c and shift B_{peak} to higher field – crucial for high-field magnets
• But precise formation mechanism is not fully understood
 – Do the nanoparticles form at the same time as Nb$_3$Sn, or by precipitation?
 – What is the size distribution of the particles?
 – How can the particles be controlled, e.g. by change of HT temp?
• Evidence can be found in literature, and through careful microscopy
Hypothesis in Four Parts

1. O & Zr exist in solid solution in the Nb alloy

2. The solubility of O & Zr is much lower in Nb$_3$Sn than in the Nb alloy
 - Low solubility causes high concentration of O & Zr ahead of Nb$_3$Sn/Nb interface

3. High O & Zr concentration causes nucleation of ZrO$_2$ on Nb$_3$Sn side of interface

4. Precipitates grow via O & Zr transport through Nb$_3$Sn
 - Either in solution in Nb$_3$Sn, or via defect structures
Approach

- Literature Review
 - Some parts of the story are already known, but scattered across the literature
- Microscopy
 - Measure change of particle size with position/HT time
 - Variation of particle size with temperature
- Analytical Model (critical size, growth)
- Numerical Model (Phase field, modelling nucleation)
H1. Oxygen & Zr exist in solution in Nb

- Nb alloy can take up to ~ 3% O as BCC-Nb + ZrO₂, according to phase diagram
- Oxidized Nb-1Zr has been seen to have ZrO₂ ~1-3.5 nm size (800°C/240h) [1]
 - At 700°C/0h, ZrO₂ clusters, if present, should be much smaller
- Therefore, whether as solid solution or Zr-O clusters, Zr & O are dispersed

1. ✔️ O & Zr exist in solid solution in the Nb alloy
2. The solubility of O & Zr is much lower in Nb₃Sn than in the Nb alloy
3. O & Zr concentration at interface causes nucleation of ZrO₂
4. Precipitates grow via O & Zr transport through Nb₃Sn

H2. Lower O & Zr solubility in Nb₃Sn

- Solubility of O in Nb-1Zr ~2.5-3%
 - increases with temperature
 [from Thermo-Calc]
- In Nb₃Sn, data scarce, but:
 - ~0.3–0.4% O has been found in Nb₃Sn [1]
 - ~0.3% Zr in Nb₃Sn also [2]

1. ✔️ O & Zr exist in solid solution in the Nb alloy
2. ✔️ The solubility of O & Zr is much lower in Nb₃Sn than in the Nb alloy
3. O & Zr concentration at interface causes nucleation of ZrO₂
4. Precipitates grow via O & Zr transport through Nb₃Sn

Thanks to Shalini Roy Koneru at OSU for generating the phase diagram.
H3. Nucleation at interface

- As Nb$_3$Sn forms, Zr & especially O pushed ahead of Nb$_3$Sn/Nb interface [1]
- High Zr & O concentration drives Zr oxide nucleation
- Oxide particles form on A15 side of interface, coherent with surrounding Nb$_3$Sn

1. ✔️ O & Zr exist in solid solution in the Nb alloy
2. ✔️ The solubility of O & Zr is much lower in Nb$_3$Sn than in the Nb alloy
3. ✔️ O & Zr concentration at interface causes nucleation of ZrO$_2$
4. Precipitates grow via O & Zr transport through Nb$_3$Sn

Atom-probe results from Jae-Yel Lee
Model of moving interface: diffusion

- Developing phase field model to capture thermodynamics + kinetics
- Not all aspects included yet, but illustrates hypothesis
- Model reproduces Zr & O pile-up at moving Nb$_3$Sn/Nb interface due to drop in solubility

Model of moving interface: precipitate evolution

- Model also illustrates hypothesis of oxide evolution following motion of interface
- Nucleation simulated qualitatively using Langevin noise
- Once fully implemented:
 - should be able to capture nucleation and coarsening
 - corroborate TEM & other observations of nanostructure
Classical Nucleation Theory

• Simple model for understanding nucleation at interface

• Energy penalty to nucleate a particle – energy reduction favors nucleation:
 – Simple case, *homogeneous* nucleation of spherical particle:
 \[
 \Delta G = -\frac{4}{3}\pi r^3(\Delta g_v - \Delta g_s) + 4\pi r^2\gamma
 \]
 Energy change = (−) Volume free energy of ppt + strain energy + interfacial energy
 – Our case, *heterogeneous* nucleation:
 less barrier to formation if an interface is already present
Contributions to nucleation energy

- Volume free energy
 - Changes linearly with temperature
- Strain energy
 - From misfit of crystal structures
- Interfacial energy
 - Less dependent on temperature
 - TEM evidence shows ZrO$_2$/Nb$_3$Sn interface is coherent [1–3] → low interfacial energy
- Critical radius: size at which reduction in volume energy overcomes interfacial energy

$$r^* = \frac{2\gamma}{(\Delta G_v - \Delta G_s)}$$

H4. Growth of nanoparticles (time/distance)

- Particle size has been observed to vary through the A15 layer
 - First-formed oxides are larger than those nearest the reaction front
- Very broad particle size distribution, larger particles perhaps at GBs
- Can be explained by transport via lattice and/or defect structures

1. ✔️ O & Zr exist in solid solution in the Nb alloy
2. ✔️ The solubility of O & Zr is much lower in Nb₃Sn than in the Nb alloy
3. ✔️ O & Zr concentration at interface causes nucleation of ZrO₂
4. ✔️ Precipitates grow via O & Zr transport through Nb₃Sn

New TEM imaging shows coarsening of particles

- Shows more clearly fine dispersion of particles near interface
 - 1-2 nm with fewer large particles up to ~10 nm
- Coarsen into smaller number of larger particles up to ~30 nm
 - Though some <3 nm particles still observed far from interface
- Very wide particle size distribution overall

TEM images (200 nm x 200 nm), for Zr+O wire made by Hyper Tech, heat treated at Fermilab 720°C/32h, processed in ImageJ with gaussian blur and “Enhance Local Contrast” function

Distance from interface: 0.5 μm 1 μm 4 μm 6 μm
Starting size of precipitate dictated by thermodynamics

\[\Delta G = \frac{4}{3} \pi r^3 (\Delta g_v - \Delta g_s) + 4\pi r^2 \gamma \]

- Applies to not just ZrO$_2$ but also HfO$_2$ (and TiO$_2$)
- Different oxide precipitate materials have different Gibbs energies (and precipitate sizes)
- Larger reduction in Gibbs energy \rightarrow smaller particles can nucleate
- Can different temperatures also modify size?

Why does this matter? Pin size

- Fluxon size = 2x coherence length ξ \[1\]
 - $H_{c2}(T) = \frac{\Phi_0}{2\pi[\xi(T)]^2} \quad H_{c2}$ of 26-28 T @ 4.2 K $\rightarrow \xi = 3.4–3.6$ nm

- Optimal point pinning per pin will occur for particles ~ 7 nm
 - Too small, decreased pinning efficacy
 - Too large, missed opportunity to make more pins
 (though large particle can pin more than one flux line [2])

Why does this matter? Pin spacing

• At 16 T, flux line spacing ~12 nm, optimum pin array would match
 – Calculated spacing on order of ~10 [1] to 40 nm [2], higher if we only count larger particles
 – In an ideal case, for 1% Zr in Nb, if all Zr converted to 7 nm ZrO$_2$, spacing ~ 33 nm [3]
 – For a given dopant level, smaller pins means more pins, smaller spacing between

• Can tailor wire recipe and heat treatment to target optimum point pinning
 – Choice of oxide material
 – Choice of heat treatment temperature

Conclusion

- Multi-part hypothesis confirmed

 1. ✔️ O & Zr exist in solid solution in the Nb alloy
 2. ✔️ The solubility of O & Zr is much lower in Nb₃Sn than in the Nb alloy
 3. ✔️ O & Zr concentration at interface causes nucleation of ZrO₂
 4. ✔️ Precipitates grow via O & Zr transport through Nb₃Sn

- Further work can suggest paths to conductor optimization:
 - Proper material
 - Choice of heat treatment
 - Control size and distribution of precipitates
 - Optimize pinning and J_c