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Abstract – We discuss formation peculiarities of the stable and unstable states in high-Tc superconductors. 
To understand the basic physical trends, which are characteristic for the current penetration mechanism 
in high-temperature superconductors, we investigate theoretically the operating states of Bi2212 slab 
without stabilizing matrix placed in DC external magnetic fields at low coolant temperature. We prove 
that the temperature of a high-Tc superconductor is not equal to the coolant temperature before instability 
onset. Therefore, the voltage-current characteristic of a high-Tc superconductor has only a positive slope 
during continuous current charging. As a result, it does not allow one to find the boundary between stable 
and unstable thermo – current states. This has to be taken into account during experiments where the 
critical current of high-Tc superconductors is defined. 
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I. INTRODUCTION 
 
The boundary of current instability onset is important factor, which determines the limitations 
to the possible applications of superconductors. To estimate this quantity, the voltage-current 
characteristic (VCC) of a superconductor are widely used. For this purpose, the measurement 
of the critical current corresponding to the fixed electric field is made. This method is based 
on the Bean critical state model, which omits the non-linear part of the voltage-current 
characteristic. It is a satisfactory approximation for conventional low-Tc superconductors 
because their VCC is sufficiently steep. However, the voltage-current characteristics of high-
Tc superconductors have a broad shape. As a result, high-Tc superconductors may operate at 
the currents that exceed their critical current [1-3]. Since the formulation of the current 
stability conditions should be based on the investigation of the stable and unstable operating 
modes of superconductor, in this study we discuss the formation peculiarities of the thermo-
current states of high-Tc superconductor, which take place during current charging.  
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II. MODEL 
 

Let us consider a superconductor with a slab geometry (-a<x<a, -∞<y<∞, -b<z<b, b>>a), 
which is placed in a constant external magnetic field parallel to its surface in the z-direction 
and is penetrated over its cross section (S=4ab). Suppose that the applied current is charged in 
the y-direction increasing linearly from zero with the constant sweep rate dI/dt and its self 
field is negligibly less than the external magnetic field. Let us describe the VCC of a 
superconductor by a power law and approximate the dependence of the critical current on the 
temperature by the linear correlation. Assume also that the superconductor has in the x-
direction the transverse size, which does not lead to the magnetic instability. As it was shown 
in [4, 5], the flux penetration phenomena during creep are characterized by finite velocity. 
Therefore, taking into consideration the existence of the moving boundary of the current 
penetration region, the set of transient 1D equations describing the evolution of the 
temperature and electric field inside a superconductor is as follows: 
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where the electric field E(x,t), current density J(x,t) and critical current density Jc(T,B) 
conform the following relationships 
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For the problem under consideration, the initial and boundary conditions are written as 
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Here, C and λ are the specific heat capacity and thermal conductivity of a superconductor, 
respectively; h is the heat transfer coefficient; T0 is the cooling bath temperature; n is the 
power law exponent of the E-J curve; Ec is the voltage criterion defining the critical current 
density of a superconductor; Jc0 and TcB are the known constant at the given external magnetic 
field B; xp is the moving boundary of the current penetration region following from the 
integral relation 
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     We used the finite difference method to solve the formulated problem. The simulation was 
made for a Bi2Sr2CaCu2O8 superconductor initially cooled at T0=4.2 K, assuming that the heat 
removal conditions on the surface of the slab are close to the conduction-cooling condition. 
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The following constants B=10T, h=10-3W/(cm2×K), n=10, Ec=10-6V/cm, TcB=26.1K, 
Jc0=1.52×104A/cm2 were set. The specific heat capacity and thermal conductivity of a 
superconductor were defined by the formulae  
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            (6) 

in accordance with [6, 7]. 
     Besides, the evolution of the thermo-current states may be also estimated using static zero-
dimensional model, if the primitive condition dI/dt→0, ha/λ<<1 takes place. In the 
framework of the slab approximation considered, the corresponding current-voltage and 
temperature-voltage relations are described as follows on the next page [5]: 

                      

                     
Fig.  1.  Sweep rate dependence of the voltage-current (a) and temperature-current (b) characteristics  

of a high-Tc superconductor: 1 – dI*/dt→0; 2, 2´ – dI*/dt=102A/(s·cm); 3, 3´ – dI*/dt=103A/(s·cm).  
The values of Eq, Tq and  I*

q determine the boundary of the stable states. 
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For convenience of the performed analysis, it was done using the current normalized by the 
slab width (I*=0.5I*/b) at a=5×10-2cm. Thereby, the normalized current sweep rate was the 
single variable quantity:  dI*/dt=0.5b-1dI/dt.  
 

III. RESULTS 
 
Figure 1 show the current dependence of the electric field and temperature induced in 
superconductor by current charging with two values of the normalized current sweep rate. 
Dashed curve 1 corresponds to a static uniform distribution of the electric field and 
temperature described by equations (7). Solid and dashed-dot curves (2, 2', 3, 3') are obtained 
using the model of Eq. (1) to (6). Here, the curves 2 and 3 correspond to the time variation of 
the thermo-current states of superconductor’s surface and curves 2' and 3' describe the 
evolution of the thermo-current states of superconductor’s centre. 
     The depicted curves indicate the existence of the following fully penetrated characteristic 
states that are proper for the stable and unstable current charging modes of high-Tc 
superconductors and depend on dI/dt. 
     First, there exists the transient period during which the fully penetrated electric fields on 
the surface of the slab and in its centre become practically equal. As a result, the redistribution 
time window between non-uniform and practically uniform fully penetrated states will 
decrease with increasing sweep rate.  
     Second, it is seen that in the over-critical electric field region (E>Ec) the fully penetrated 
dependences E(I*, dI*/dt) and T(I*, dI*/dt) that follow from the 1D unsteady model (1) – (6) 
are not identical with static dependences defined by equations (7). Moreover, the transient 
differential resistivity of the superconductor not only decreases with increasing dI*/dt, but has 
just positive values. Consequently, the transient voltage-current characteristic of a high-Tc 
superconductor does not allow one to find the boundary of the current instability onset in the 
continuous current charging experiments. Really, in the static zero-dimensional 
approximation, the limiting current-carrying capacity is defined by the condition /E J∂ ∂ →∞  
[8], which identifies the boundary between positive (stable) and negative (unstable) static 
values of superconductor’s differential resistivity. The corresponding static boundary 
quantities of the electric field Eq, current per width I*

q and temperature Tq are depicted in 
Fig.1 by the dotted lines. According to the initial parameters used, these boundary points exist 
in the over-critical electric field region. The conditions describing the existence of the stable 
over-critical static states are formulated in [9]. However, the condition /E J∂ ∂ →∞  is not 
observed in the unsteady thermo-current states as the transient voltage-current characteristic 
of a high-Tc superconductor has only positive values.  
     To explain this peculiarity, let us use the transient zero-dimensional approximation. In the 
fully penetrated mode, this approximation following from equation (1) is written as 

0( ) ( )dT hC T T T EJ
dt a

= − − +                                                             (8) 
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Assuming that the variation in the magnetic field does not significantly change the critical 
current of a superconductor, it is easy to get 
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using the VCC of superconductor. To find the term dT/dJ, let us utilize equation (8) taking 
into consideration that 

1dT dT dI
dt S dJ dt

=  

Then unsteady dependence dT/dJ is given by 
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Since dT/dt>0 during current charging then dT/dJ>0. Therefore, as follows from equations (9) 
and (10), the differential resistivity of a superconductor is always positive in the 
monotonously increasing current charging and the slope of the unsteady E(I*, dI*/dt) and T(I*, 
dI*/dt) dependences will become smaller when the heat capacity of a superconductor is 
higher, i.e., will decrease with increasing temperature of a superconductor during both stable 
and unstable states. As follows from Figure 1(b), there exists stable temperature rise of the 
superconductor before current instability. This unavoidable temperature variation of the 
superconductor will change its heat capacity and the discussed mechanism will be observed 
during current charging modes. Generally, in the case of superconducting composites, their 
allowable overheating is a function of the cooling conditions, amount of the superconductor in 
the composite, properties of matrix, etc. [10, 11]. 
     To avoid the complexity of using both the static and unsteady definitions of the current 
instability boundary of high-Tc superconductors, the current charging with break is used in the 
experiments [12-18]. In this case the value dI/dt is equal to zero after the time when the 
applied current has a certain value I0. Physically, this method is based on the existence of the 
static thermo-current states that precede the instability onset.  For the first time it has been 
established in [19, 20] when investigating the ramp-rate limitation problem for low-Tc 
composite superconductor. They are described by the static voltage-current and temperature-
current characteristics, which in simple cases satisfy equations (7). Therefore, all currents in 
Figure 1 which exceed the relevant value I*

q correspond to unstable currents. 
     Consequently, in the monotonously increasing current charging modes, non-stationary 
voltage-current and temperature-current characteristics of high-Tc superconductors during 
fully penetrated states have only one branch with positive slope, which depends on the current 
sweep rate: the slope decreases when dI/dt increases. It exists both in the stable and unstable 
thermo-current states. This peculiarity is due to the temperature rise of a high-Tc 
superconductor both before and after instability onset that increases the heat capacity of the 
superconductor. That is why the transient voltage-current characteristics of high-Tc 
superconductors do not permit to find the current instability conditions and the possible stable 
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increase in temperature of high-Tc superconductors should be taken into account for correct 
investigation of their critical currents. 
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