Optimization of LEKIDs for NIKA: a dual band kinetic inductance camera for the IRAM 30 m telescope

Lumped Element KID Array

| Institut NEEL | A. Monfardini, M. Calvo, C. Hoffmann, A. Bideaud, N. Boudou, A. Benoit, P. Camus, L. Swenson (now Caltech) |
| Grenoble, France | |

| Department of Physics and Astronomy | S. Doyle, E. Pascale, P. Mauskopf |
| Cardiff, Wales | |

| Institut de Radioastronomie millimétrique | M. Rösch, K.F. Schuster |
| Grenoble, France | S. Leclercq |

| Università di Roma la Sapienza | A. Cruciani, C. Giordano |
| Rome, Italy | |

| FBK, Trento | |
| Italy | |

Antenna coupled quarter wavelength KID Array

| SRON Netherlands Institute for Space research | J. Baselmans, S. Yates, A. Barychev, J-J. Lankwarden, L. Ferrari, P. deVisser |
| Groningen, Utrecht, Netherlands | |

| Delft University of Technology | A. Endo, P. de Visser |
| Delft, Netherlands | |

Markus Rösch, KRYO 2011, Autrans, France
The NIKA2 camera and sky simulator

H3H4 cryogen free dilution fridge
Bands : 1.25 and 2.05 mm
Pixels : 132 x 2
Field-of-view : 2 arc-min
T_{\text{base}} = 60\text{mK}

Pulse tube cryostat with black body
Temperature range: 50 – 300 K

Dichroic filter made in Cardiff

Mars at IRAM “lab planet”

A. Bideaud, PhD thesis, 2010

Markus Rösch, KRYO 2011, Autrans, France
The NIKA 2-mm LEKID array

Lumped Element KIDs (Doyle, PhD thesis, 2008)
- discrete capacity and inductance
- constant and high current density in inductive part
- frequency tuning by changing the finger length
- direct absorption area
- matching to free space impedance → optimizing the optical efficiency

- Material: aluminum
- Thickness: 20 nm
- Substrate: high resistive silicon
- number of pixels: 132
- sample holder: aluminum
- not visible: back-short

Markus Rösch, KRYO 2011, Autrans, France
Optical coupling of LEKIDs

\[Z_{\text{substrate}} = \frac{Z_{FS}}{\sqrt{\varepsilon_r}} = \frac{120 \pi \Omega}{\sqrt{\varepsilon_r}} \]

\[Z_{\text{LEKID}} = R + j \omega L = \frac{R_{\text{sheet}}}{s / w} + j \frac{w}{\lambda} \ln \csc \left(\frac{2w}{\pi s} \right) Z_0 \]

Marcuvitz, Microwave Handbook

\[|S|_{11} = \left| \frac{Z_L - Z_0}{Z_L + Z_0} \right| \]

absorption \[= 1 - |S|_{11}^2\]
Reflection measurements at room temperature

Assumptions:
- detection = absorption
- el. properties are comparable to cryogenic case
 (150 GHz > 90 GHz gap frequency of aluminum)
- resistivity can be adapted by RRR factor

- frequency band: 120 – 180 GHz
- only one polarization measurable
- only first mode measurable
- side lobes are not considered
- radiation in different polarizations are not considered

Reflection measurement results

Back-short dependence of optical coupling

- 40 nm aluminum film

→ $R_{\text{sheet}} = 1.3 \, \text{ohm}$
→ $R = 90 \, \text{ohm}$ with $s/w=(69)^{-1}$
→ $L = 200 \, \text{pH}$

This corresponds to a 25 nm aluminum film at a temperature just above $T_{C,\text{al}} = 1.2 \, \text{K}$

- 300 μm high resistivity substrate
Measurement and simulation

Comparison of reflection measurement, simulation and transmission line model

Comparison of reflection measurement, simulation and FTS measurement at 100 mK in camera

A. Bideaud, thesis, 2010

Markus Rösch, KRYO 2011, Autrans, France
Simulation of current distribution in LEKIDs

Excited current distribution from absorbed mm-wave at 150 GHz

(This is not the current distribution due to the coupled energy from the transmission line at ~1.5 GHz when the resonators is on resonance!)

Phase: 0 deg

Phase: 90 deg

Current distribution varies with the phase of the incoming mm-wave

Current in strips that are orthogonal to the el. field vector is small

→ Error due to radiation in different polarizations is small
The IRAM 30m telescope at Pico Veleta, Spain

- Sierra Nevada, Spain
- altitude: 2900 m
- primary dish: ∅ 30 m
- secondary dish: ∅ 2 m

Working Bands:

3mm (100 GHz)
2.05mm (146 GHz)
1.25mm (240 GHz)
0.87mm (345 GHz)
2nd test run at the IRAM 30 m telescope October 2010

- Phase noise relatively flat (under excellent sky conditions)
 \[\sim 1 / f^{0.15} \]

- avg. NEP = \(2.3 \times 10^{-16} \) W/√Hz @ 1 Hz per pix

- NEFD = 37 mJy*√s per pix

- Problems due to pixel cross-talk
 - Photometry error \(\sim 20 \% \)

Observed sources at 2 mm with LEKIDs

CygA

Integration time: 2200 sec
Max. 2.47 Jy/beam

CasA

Max. 600 mJy/beam

NGC 1068

Integration time: 1260 sec
Max. 66 mJy/beam

LEKID geometry for 2 polarizations

- constant filling-factor over the whole direct detection area
- reasonable filling factor for optimal optical coupling
- symmetrical geometry: - same optical coupling for horizontal and vertical orientation
 - symmetrical current distribution

filling factor too low:
→ Z_{LEKID} too high

↑

for aluminum

↓

filling factor too high:
→ Z_{LEKID} too low

Hilbert curve

reasonable filling factor possible for 150 GHz:
→ Z_{LEKID} can be optimized
LEKID geometry for 2 polarizations

- same filling-factor as meander geometry (assuming similar absorption in interrupted lines)
- same coupling to feed line

- almost identical absorption for both polarizations
Low temperature measurements of Hilbert LEKIDs

VNA scan of 132 pixel array

Optical response (load 200 and 300 K) (using polarizer in front of cryostat in vertical (PV) and horizontal position (PH))

Response for both polarizations identical
Sensitivity of a 20 nm Al Hilbert LEKID array

- Noise equivalent temperature:
 \[NET = \frac{\Delta T}{S / N} \quad [\text{K/Hz}^{0.5}] \]

- Noise equivalent power:
 \[NEP = \frac{P}{S / N} \quad [\text{W/Hz}^{0.5}] \]

- Average sensitivity: \(NET = 2.5 \text{ mK/Hz}^{0.5} \) per pix \hspace{1cm} \text{(factor 2-3 from IRAM specifications)}

- Best pixels: \(NET = 0.8 \text{ mK/Hz}^{0.5} \) per pix

Markus Rösch, KRYO 2011, Autrans, France
TiN LEKIDs

JPL film, $T_c \approx 1.4$ K
Thickness ≈ 50 nm
LEKID design and measurement:
Institute Néel/IRAM

Huge responsivity:

6 kHz / K $\approx 6 \cdot$ LEKID$_{Al=20nm}$

$L_{kin}(TiN) \approx 20 \cdot L_{kin}(Al)$

Under lower loading (≈ 1 pW/pix) \rightarrow NEP$_{1Hz}$ $\approx 2 \cdot 10^{-17}$ W/Hz$^{0.5}$

IN PROGRESS:
- New SiGe Caltech amplifier
- LEKID design and film thickness has to be optimised for NIKA loading
TiN LEKIDs made at IRAM

60 nm TiN film @ T = 60 mK, Tc = 2.1 K

Markus Rösch, KRYO 2011, Autrans, France
Conclusion

- Reflection measurement setup to optimize the optical coupling at room temperature as alternative to cryogenic measurements

- Good agreement between reflection measurements, transmission line model, simulation and FTS measurement

- Successful telescope run in October 2010 (competitive with existing instruments)

- Two polarization geometry shows promising results

- Factor gained in NET compared to meander structure ~ 1.5

- Best pixels showed NET = 0.8 mK/Hz^{0.5} \rightarrow \text{new record for LEKIDs at 2 mm}

- TiN promising material for future LEKIDs
Outlook

- developing arrays for 1 mm
- Optimize the optical coupling by simulations and measurements for 1 mm
- cross-talk issues
- investigation in TiN LEKIDs
- 3rd telescope run foreseen in October 2011 with LEKID arrays at 1 and 2 mm.