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Abstract—We developed a large-scale reconfigurable data path 

(LSRDP) using single-flux-quantum (SFQ) circuits as a 
fundamental technology that can overcome the 
power-consumption and memory-wall problems in CMOS 
microprocessors in future high-end computing systems. An SFQ 
LSRDP is composed of several thousands of SFQ floating-point 
units connected by reconfigurable SFQ network switches to 
achieve high performance with low power consumption. In this 
study, we designed and implemented an SFQ floating-point 
multiplier (FPM), which is one of the key components of the SFQ 
LSRDP. We designed a systolic-array bit-serial half-precision 
FPM using the 2.5 kA/cm2 Nb process. The resultant circuit area 
and number of Josephson junctions are 6.22 mm × 3.78 mm and 
11044, respectively. The designed clock frequency is 25 GHz. We 
tested the circuit and confirmed the correct operation of the FPM 
by on-chip high-speed tests. 
 

Index Terms— floating point units, LSRDP, multiplier, SFQ 
circuits, superconducting integrated circuits 
 

I. INTRODUCTION 
o far, significant progress in the performance of 
microprocessors has been achieved. However, there are 

several performance problems impeding further progress. 
These include a power-consumption problem and a 
memory-wall problem. At present, the performance of 
general-purpose microprocessors is limited by the memory 
access time.  

To overcome these problems, a large-scale reconfigurable 
data path (LSRDP) [1] was proposed as processor architecture 
suitable for single-flux-quantum (SFQ) circuits [2]. The 
LSRDP consists of several thousands of SFQ floating-point 
units (FPUs) and SFQ network switches. Because the data are 
directly transferred between FPUs without memory accesses, 

high performance with low power consumption can be realized. 
A floating-point multiplier (FPM) is one of the basic 
components of floating-point units. In this study we designed 
and implemented an SFQ half-precision FPM and measured it 
at high frequency by on-chip high-speed tests. 
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II. FLOATING-POINT NUMBER 
A floating-point number is the expression of real numbers in 

computing systems. It is represented as 
( ) ES F 21 ××− ,                             (1) 

where S is the sign, F is a fraction and E is an exponent. 
Table 1 lists the bit lengths for several formats of 

floating-point numbers specified in the IEEE standard. In this 
study, we designed a half-precision (16 bit) FPM. It should be 
noted that the exponent is biased by 15 to simplify the 
expression of the floating-point number.  
 

TABLE 1 THE BIT LENGTHS OF SEVERAL FORMATS OF 
FLOATING-POINT NUMBERS SPECIFIED IN THE IEEE STANDARD 

 Sign Exponent Fraction 

Half-precision (16 bit ) 1 bit 5 bit 11 bit 

Single-precision (32 bit) 1 bit 8 bit 24 bit 

Double-precision (64 bit ) 1 bit 11 bit 53 bit 

 

III. DESIGN OF FLOATING-POINT MULTIPLIER 
A block diagram of the FPM is shown in Fig. 1. The FPM is 

divided into two parts: a fraction part and an exponent part. The 

S

 

 
Fig. 1.  A block diagram of an SFQ FPM. (X_f, Y_f) and (X_e, Y_e) are input
signals for each calculation part. “LOAD” and “reset” are control signals for
each part. Calculation results are output to “Z_f” and “Z_e.” 
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fraction part primarily performs multiplication of the fractions 
of two floating-point numbers to be calculated. The exponent 
part adds two exponents and determines the sign of the 
calculation result. After the calculation in each part, the results 
are normalized in the normalizer if they are not in normalized 
scientific form. We adopted the bit-serial architecture to reduce 
the circuit area and complexity [3] in the FPM design. Two 
bit-serial data paths corresponding to the fraction part and the 
exponent part were used, which are denoted as (X_f, Y_f) and 
(X_e, Y_e) in Fig. 1, respectively.  

 
Fig. 2.  A circuit schematic of the processing element of the systolic-array
bit-serial multiplier. D represents a delay flip-flop. ND represents a
non-destructive read-out flip-flop. 
 
 

 
Fig. 3.  A block diagram of the systolic-array bit-serial multiplier, which is
composed of a one-dimensional array of the processing elements (PE).
NDROs are placed between PEs to improve the throughput of the multiplier.
 
 

 
Fig. 4.  A circuit diagram of the exponent part. “X_e” and “Y_e” are input data.
“load” is control signal. 
 

A. Fraction Part 
The fraction part, which multiplies two fractions, was 

designed based on the systolic-array structure [4], which is one 
of the architectures for implementing multipliers [5]. In this 
architecture, processing elements (PEs), which perform simple 
calculations, are arranged regularly and multiplication is 
performed by pipelining. An n-bit multiplier can easily be made 
by placing n pieces of PEs in a row. 

Fig.  2 shows a circuit schematic of the PE. In this figure, X = 
{x0, x1, •••, xn} and Y = {y0, y1, •••, yn}, and both are the fractions 
of two floating-point numbers to be calculated. These fractions 
are serially input from the LSB (least significant bit) to the 
MSB (most significant bit) at 25 GHz. The multiplication is 
controlled by providing the “load” and “reset” signals at the 
proper timing [4]. Partial products are calculated by two 
NDROs, indicated by the ellipse in Fig. 2. A bit-serial adder 
adds the calculated partial products and carries data, S_in, from 
the previous PE, and outputs carry data, S_out, to the next PE. 
The i-th PE calculates the partial products of X and yi. 

B. Improving the Throughput of the Multiplier 
The most important performance indicator of a multiplier is 

the throughput. In conventional n-bit systolic-array multipliers, 
at least 2n clock inputs are needed to obtain a result to avoid 
data collisions in the PEs because the bit-length of the result is 
2n. Therefore, data can be input every 2n clock cycles. 
Assuming the input frequency is 25 GHz and the bit-length of 
the fractions, X and Y, are 11 bits, the throughput of the 
multiplier is estimated to be 1.13 giga operations per second. 
This throughput is lower than that of SFQ floating-point adders 
[6], and hence the performance of the FPU is limited by the 
FPM. To improve the performance of the FPM, we propose a 
novel architecture for the systolic-array multiplier.  

Although the result becomes 2n bits in n-bit multiplication, 
valuable output data in the floating-point calculation is (n+1) 
bits from the MSB and includes the overflow bit. By 
eliminating data in the lower (n-1) bits, the throughput of the 
floating-point multiplier can be improved. Fig.  3 shows a block 
diagram of the systolic-array bit-serial multiplier with 
improved throughput. NDROs are added between PEs to 
control the propagation of results calculated by the previous PE, 
and so the results at lower (n-1) bits do not propagate to the next 
PEs. As a result, the data can be input every (n+1) clock cycles 
and the throughput is improved to 2.08 giga operations per 
second for 25 GHz operation. 

C. Exponent part 
The exponent part adds the exponents of the two 

floating-point numbers to be calculated. Fig.  4 shows a block 
diagram of the exponent part. The exponent part is composed of 
a bit-serial adder, EXOR gate, subtractor and normalizer. The 
first bit of X_e and Y_e corresponds to the sign of the 
floating-point numbers. The EXOR gate determines the sign of 
the calculation result. After addition of the two exponents, 15 is 
subtracted from the result because each exponent is biased by 
15 in the half-precision floating-point number.  

D. Normalizer 
When an overflow occurs in the fraction, the result should be 

normalized to fit a normalized scientific form. Fig.  5 shows a 
block diagram of the normalizer in the fraction part. In this 
circuit, DFFs store the calculation result of the fraction. DFF0 
stores the data of the overflow bit. The NDROs shown in Fig. 5 
control the shift of the fraction according to the overflow bit. If 
an overflow occurs, the upper NDRO is enabled and the 
fraction is shifted left by 1 bit. At the same time, the circuit 
sends a control signal, shift_ex, to the normalizer in the 
exponent part. The normalizer in the exponent part adds 1 to the 
exponent if it receives the control signal. If an overflow does 
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not occur, the lower NDRO is enabled and the fraction data is 
not shifted.  

IV. DESIGN AND DEMONSTRATION OF FPM 
 

The SFQ half-precision FPM was fabricated using the SRL 
Nb 2.5 kA/cm2 process [7] and the CONNECT cell library [8]. 
A microphotograph of the FPM is shown in Fig. 6. The circuit 
area is 6.22 mm × 3.78 mm and the number of Josephson 
junctions is 11044. The target frequency is 25 GHz. This circuit 
includes shift registers and a ladder-type clock generator for 
on-chip testing [9]. Each calculation block is connected by 
passive transmission lines which are composed of microstrip 
and stripline transmission lines [10], [11]. The digital circuit 
simulation indicates that the DC bias margin of the FPM is 
±20% at a 25 GHz input frequency.  

We estimated the circuit scale and performance of single- and 
double-precision FPMs based on the result of the designed 
half-precision FPM. Table 2 shows the estimated results. In the 
table, the clock skew is the time lag between input and output of 
the clock signals for the FPM. Latency is the number of clock 
pulses required to produce the results. The minimum interval is 
the minimum possible clock cycles between input data, which 
corresponds to the reciprocal of the maximum throughput.  

 
Fig. 7.  A test result of the half-precision FPM in a low-speed test. The data are
started with the LSB and this data pattern has overflow in the fraction part. We
confirmed the correct operation. The input data pattern is X = -(1.1010110111)2

× exp(11001)2, Y = -(1.1001010011)2 × exp(01101)2. The correct result, S =
(1.0101001110)2 × exp(11000)2, is measured. 
 
 

 
Fig. 5.  A circuit schematic of the normalizer in the fraction part. “Z_in” 
represents the output from the fraction part. A clock tree for DFFs is not shown 
in the figure. 
 
 

 
Fig. 6.  Microphotograph of test circuit of the SFQ half-precision FPM. The 
circuit includes the FPM and several circuits for the on-chip high-speed test. 
 

TABLE 2 THE ESTIMATED CIRCUIT SCALE AND PERFORMANCE 
OF THE SFQ FPMS  

 # of JJs 
Clock 
skew 
(ps) 

Latency
(clock) 

Minimum 
interval 
(clock) 

PE 639 234 1 - 
Half-precision 8904 2834 23 12 

Single-precision 20700 6300 49 25 
Double-precision 44500 13100 107 54 
 

 

We measured the DC bias margins of the FPM for several 
data patterns in a low-speed test and on-chip high-speed test. 
Fig.  7 shows an example of the low-speed test results. In this 
test pattern, the input data are X = -(1.1010110111)2 × 
exp(11001)2, and Y = -(1.1001010011)2 × exp(01101)2. The 
first bit of exponent_X and exponent_Y in the figure is the sign 
bit. One can see that the correct answer, S = (1.0101001110)2 × 
exp(11000)2 is obtained. It should be noted that this test pattern 
also checks the overflow of the fraction and normalization of 
the result. The DC bias margin is ±2.95% at low speed. 

In the on-chip high-speed test, we could only confirm the 
correct operation of the fraction part in this chip. The maximum 
operating frequency was about 31.5 GHz. We also confirmed 
the correct operation of the exponent part in different chips, in 

HP_Administrator
Text Box
ESNF, No. 6, October 2008; ASC Preprint 2EZ03 conforming to IEEE Policy on Electronic Dissemination, Section 8.1.9



 
 

4

which the maximum operating frequency was 25 GHz. 
Unfortunately, we did not confirm the correct high-speed 
operation of both the fraction and exponent parts in the same 
chip.  

V. CONCLUSION  
We designed, implemented and demonstrated an SFQ 

bit-serial half-precision floating-point multiplier. In the design 
of this circuit, we adopted a systolic-array structure in the 
fraction part. We fabricated the FPM using the SRL Nb 2.5 
kA/cm2 standard process. The number of Josephson junctions is 
11044 and the circuit area is 6.22 mm × 3.78 mm. We 
confirmed the correct operation of the FPM at low speed. In the 
on-chip high-speed test, we confirmed the correct operation of 
the fraction and the exponent parts separately by using different 
chips. The maximum operating frequencies were about 31.5 
GHz in the fraction part and 25 GHz in the exponent part. 
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